IDEAS home Printed from https://ideas.repec.org/p/nuf/econwp/0114.html

Inferring Strategies from Observed Actions: A Nonparametric, Binary Tree Classification Approach

Author

Abstract

This paper introduces a non-parametric binary classification tree approach to inferring unobserved strategies from the observed actions of economic agents. The strategies are in the form of possibly nested if-then statements. We apply our approach to experimental data from the repeated ultimatum game, which was conducted in four different countries by Roth et al. (1991). We find that strategy inference is consistent with existing inference, provides new explanations for subject behavior, and provides new empirically-based hypotheses regarding ultimatum game strategies. We conclude that strategy inference is potentially useful as a complementary method of statistical inference in applied research.

Suggested Citation

  • Jim Engle-Warnick, 2001. "Inferring Strategies from Observed Actions: A Nonparametric, Binary Tree Classification Approach," Economics Papers 2001-W14, Economics Group, Nuffield College, University of Oxford.
  • Handle: RePEc:nuf:econwp:0114
    as

    Download full text from publisher

    File URL: http://www.nuff.ox.ac.uk/Economics/papers/2001/w14/bintree1gen.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franz Rothlauf & Daniel Schunk & Jella Pfeiffer, 2005. "Classification of Human Decision Behavior: Finding Modular Decision Rules with Genetic Algorithms," MEA discussion paper series 05079, Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy.
    2. Jim Engle-Warnick & Bradley Ruffle, 2006. "The Strategies Behind Their Actions: A Method To Infer Repeated-Game Strategies And An Application To Buyer Behavior," Departmental Working Papers 2005-04, McGill University, Department of Economics.
    3. Daniel Houser & Michael Keane & Kevin McCabe, 2004. "Behavior in a Dynamic Decision Problem: An Analysis of Experimental Evidence Using a Bayesian Type Classification Algorithm," Econometrica, Econometric Society, vol. 72(3), pages 781-822, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nuf:econwp:0114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maxine Collett (email available below). General contact details of provider: https://www.nuffield.ox.ac.uk/economics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.