IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v10y2021i5ne399.html
   My bibliography  Save this article

Power system stability in the transition to a low carbon grid: A techno‐economic perspective on challenges and opportunities

Author

Listed:
  • Lasantha Meegahapola
  • Pierluigi Mancarella
  • Damian Flynn
  • Rodrigo Moreno

Abstract

Increasing power system stability challenges are being witnessed worldwide, while transitioning toward low‐carbon grids with a high‐share of power electronic converter (PEC)‐interfaced renewable energy sources (RESs) and distributed energy resources (DERs). Concurrently, new technologies and operational strategies are being implemented or proposed to tackle these challenges. Since electricity grids are deregulated in many jurisdictions, such technologies need to be integrated within a market framework, which is often a challenge in itself due to inevitable regulatory delays in updating grid codes and market rules. It is also highly desirable to ensure that an economically feasible optimal technology mix is integrated in the power system, without imposing additional burdens on electricity consumers. This article provides a comprehensive overview of emerging power system stability challenges posed by PEC‐interfaced RES and DER, particularly related to low inertia and low system strength conditions, while also introducing new technologies that can help tackle these challenges and discussing the need for suitable techno‐economic considerations to integrate them into system and market operation. As a key point, the importance of recognizing the complexity of system services to guarantee stability in low‐carbon grids is emphasized, along with the need to carefully integrate new grid codes and market mechanisms in order to exploit the full benefits of emerging technologies in the transition toward ultra‐low carbon futures. This article is categorized under: Energy Systems Economics > Economics and Policy Energy Systems Analysis > Systems and Infrastructure Energy and Development > Systems and Infrastructure

Suggested Citation

  • Lasantha Meegahapola & Pierluigi Mancarella & Damian Flynn & Rodrigo Moreno, 2021. "Power system stability in the transition to a low carbon grid: A techno‐economic perspective on challenges and opportunities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
  • Handle: RePEc:bla:wireae:v:10:y:2021:i:5:n:e399
    DOI: 10.1002/wene.399
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.399
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.399?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Inzunza, Andrés & Moreno, Rodrigo & Bernales, Alejandro & Rudnick, Hugh, 2016. "CVaR constrained planning of renewable generation with consideration of system inertial response, reserve services and demand participation," Energy Economics, Elsevier, vol. 59(C), pages 104-117.
    2. Martínez Ceseña, Eduardo A. & Good, Nicholas & Mancarella, Pierluigi, 2015. "Electrical network capacity support from demand side response: Techno-economic assessment of potential business cases for small commercial and residential end-users," Energy Policy, Elsevier, vol. 82(C), pages 222-232.
    3. Schachter, Jonathan A. & Mancarella, Pierluigi & Moriarty, John & Shaw, Rita, 2016. "Flexible investment under uncertainty in smart distribution networks with demand side response: Assessment framework and practical implementation," Energy Policy, Elsevier, vol. 97(C), pages 439-449.
    4. Moreno, R. & Barroso, L.A. & Rudnick, H. & Mocarquer, S. & Bezerra, B., 2010. "Auction approaches of long-term contracts to ensure generation investment in electricity markets: Lessons from the Brazilian and Chilean experiences," Energy Policy, Elsevier, vol. 38(10), pages 5758-5769, October.
    5. Yin Sun & E. C. W. (Erik) de Jong & Xiongfei Wang & Dongsheng Yang & Frede Blaabjerg & Vladimir Cuk & J. F. G. (Sjef) Cobben, 2019. "The Impact of PLL Dynamics on the Low Inertia Power Grid: A Case Study of Bonaire Island Power System," Energies, MDPI, vol. 12(7), pages 1-16, April.
    6. repec:ces:ifodic:v:8:y:2010:i:3:p:14566927 is not listed on IDEAS
    7. Paul L. Joskow, 2010. "Market Imperfections versus Regulatory Imperfections," ifo DICE Report, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 8(03), pages 3-7, October.
    8. Bri‐Mathias S. Hodge & Himanshu Jain & Carlo Brancucci & Gab‐Su Seo & Magnus Korpås & Juha Kiviluoma & Hannele Holttinen & James Charles Smith & Antje Orths & Ana Estanqueiro & Lennart Söder & Damian , 2020. "Addressing technical challenges in 100% variable inverter‐based renewable energy power systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(5), September.
    9. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Wen, Huiqing & Yan, Ke & Kirtley, James, 2020. "Power ramp-rates of utility-scale PV systems under passing clouds: Module-level emulation with cloud shadow modeling," Applied Energy, Elsevier, vol. 268(C).
    10. Wang, Han & Riaz, Shariq & Mancarella, Pierluigi, 2020. "Integrated techno-economic modeling, flexibility analysis, and business case assessment of an urban virtual power plant with multi-market co-optimization," Applied Energy, Elsevier, vol. 259(C).
    11. Anthony PAPAVASILIOU & Yves SMEERS, 2017. "Remuneration of flexibility using operating reserve demand curves: a case study of Belgium," LIDAM Reprints CORE 2900, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Paul L. Joskow, 2010. "Market Imperfections versus Regulatory Imperfections," ifo DICE Report, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 8(3), pages 3-7, October.
    13. Mazza, Andrea & Bompard, Ettore & Chicco, Gianfranco, 2018. "Applications of power to gas technologies in emerging electrical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 794-806.
    14. Anthony Papavasiliou & Yves Smeers, 2017. "Remuneration of Flexibility using Operating Reserve Demand Curves: A Case Study of Belgium," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    15. Lasantha Meegahapola & Alfeu Sguarezi & Jack Stanley Bryant & Mingchen Gu & Eliomar R. Conde D. & Rafael B. A. Cunha, 2020. "Power System Stability with Power-Electronic Converter Interfaced Renewable Power Generation: Present Issues and Future Trends," Energies, MDPI, vol. 13(13), pages 1-35, July.
    16. D. Flynn & Z. Rather & A. Ardal & S. D'Arco & A.D. Hansen & N.A. Cutululis & P. Sorensen & A. Estanquiero & E. Gómez & N. Menemenlis & C. Smith & Ye Wang, 2017. "Technical impacts of high penetration levels of wind power on power system stability," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(2), March.
    17. Moreno, Rodrigo & Moreira, Roberto & Strbac, Goran, 2015. "A MILP model for optimising multi-service portfolios of distributed energy storage," Applied Energy, Elsevier, vol. 137(C), pages 554-566.
    18. Zhou, Yutian & Panteli, Mathaios & Moreno, Rodrigo & Mancarella, Pierluigi, 2018. "System-level assessment of reliability and resilience provision from microgrids," Applied Energy, Elsevier, vol. 230(C), pages 374-392.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albert Poulose & Soobae Kim, 2023. "Transient Stability Analysis and Enhancement Techniques of Renewable-Rich Power Grids," Energies, MDPI, vol. 16(5), pages 1-30, March.
    2. Ahmed, Faraedoon & Al Kez, Dlzar & McLoone, Seán & Best, Robert James & Cameron, Ché & Foley, Aoife, 2023. "Dynamic grid stability in low carbon power systems with minimum inertia," Renewable Energy, Elsevier, vol. 210(C), pages 486-506.
    3. Luís F. N. Lourenço & Filipe Perez & Alessio Iovine & Gilney Damm & Renato M. Monaro & Maurício B. C. Salles, 2021. "Stability Analysis of Grid-Forming MMC-HVDC Transmission Connected to Legacy Power Systems," Energies, MDPI, vol. 14(23), pages 1-25, December.
    4. Xiying Gao & Yan Guan & Dianjia Sun & Li Liu & Jiaxuan Yang & Zhibin Wang & Ziwei Guo & Yue Wang & Gangjun Gong, 2022. "An Ecological, Power Lean, Comprehensive Marketing Evaluation System Based on DEMATEL–CRITIC and VIKOR: A Case Study of Power Users in Northeast China," Energies, MDPI, vol. 15(11), pages 1-18, May.
    5. Prakash, Abhijith & Bruce, Anna & MacGill, Iain, 2022. "Insights on designing effective and efficient frequency control arrangements from the Australian National Electricity Market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Angelo Lunardi & Luís F. Normandia Lourenço & Enkhtsetseg Munkhchuluun & Lasantha Meegahapola & Alfeu J. Sguarezi Filho, 2022. "Grid-Connected Power Converters: An Overview of Control Strategies for Renewable Energy," Energies, MDPI, vol. 15(11), pages 1-33, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muñoz, Francisco D. & Suazo-Martínez, Carlos & Pereira, Eduardo & Moreno, Rodrigo, 2021. "Electricity market design for low-carbon and flexible systems: Room for improvement in Chile," Energy Policy, Elsevier, vol. 148(PB).
    2. Daraeepour, Ali & Patino-Echeverri, Dalia & Conejo, Antonio J., 2019. "Economic and environmental implications of different approaches to hedge against wind production uncertainty in two-settlement electricity markets: A PJM case study," Energy Economics, Elsevier, vol. 80(C), pages 336-354.
    3. David P. Brown & Andrew Eckert & Douglas Silveira, 2023. "Strategic interaction between wholesale and ancillary service markets," Competition and Regulation in Network Industries, , vol. 24(4), pages 174-198, December.
    4. Nancy L. Rose, 2014. "Learning from the Past: Insights for the Regulation of Economic Activity," NBER Chapters, in: Economic Regulation and Its Reform: What Have We Learned?, pages 1-23, National Bureau of Economic Research, Inc.
    5. Stephen Littlechild, 2012. "Merchant and regulated transmission: theory, evidence and policy," Journal of Regulatory Economics, Springer, vol. 42(3), pages 308-335, December.
    6. Karsten Neuhoff & Jörn C. Richstein & Mats Kröger, 2023. "Reacting to Changing Paradigms: How and Why to Reform Electricity Markets," DIW Berlin: Politikberatung kompakt, DIW Berlin, German Institute for Economic Research, volume 127, number pbk189, January.
    7. Heinrich, Florian & Appel, Franziska & Balmann, Alfons, 2019. "Can land market regulations fulfill their promises?," EconStor Preprints 208388, ZBW - Leibniz Information Centre for Economics.
    8. Vassiliev, M. & Filatov, A., 2011. "The Models of Strategic Interaction between Network and Generating Companies at Electricity Transmission Market," Journal of the New Economic Association, New Economic Association, issue 10, pages 54-73.
    9. Heinrich, Florian & Appel, Franziska & Balmann, Alfons, 2019. "Can land market regulations fulfill their promises?," FORLand Working Papers 12 (2019), Humboldt University Berlin, DFG Research Unit 2569 FORLand "Agricultural Land Markets – Efficiency and Regulation".
    10. Le Cadre, Hélène & Mezghani, Ilyès & Papavasiliou, Anthony, 2019. "A game-theoretic analysis of transmission-distribution system operator coordination," European Journal of Operational Research, Elsevier, vol. 274(1), pages 317-339.
    11. Braeuer, Fritz & Rominger, Julian & McKenna, Russell & Fichtner, Wolf, 2019. "Battery storage systems: An economic model-based analysis of parallel revenue streams and general implications for industry," Applied Energy, Elsevier, vol. 239(C), pages 1424-1440.
    12. Stover, Oliver & Karve, Pranav & Mahadevan, Sankaran, 2023. "Reliability and risk metrics to assess operational adequacy and flexibility of power grids," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    13. Maria Kannavou & Marilena Zampara & Pantelis Capros, 2019. "Modelling the EU Internal Electricity Market: The PRIMES-IEM Model," Energies, MDPI, vol. 12(15), pages 1-28, July.
    14. Cartuyvels, Jacques & Papavasiliou, Anthony, 2022. "Calibration of Operating Reserve Demand Curves using Monte Carlo Simulations," LIDAM Discussion Papers CORE 2022009, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Neuhoff, Karsten & Richstein, Jörn C. & Kröger, Mats, 2023. "Reacting to changing paradigms: How and why to reform electricity markets," Energy Policy, Elsevier, vol. 180(C).
    16. Bajo-Buenestado, Raúl, 2021. "Operating reserve demand curve, scarcity pricing and intermittent generation: Lessons from the Texas ERCOT experience," Energy Policy, Elsevier, vol. 149(C).
    17. Tsaousoglou, Georgios & Petsinis, Konstantinos & Makris, Prodromos & Skoteinos, Iraklis & Efthymiopoulos, Nikolaos & Varvarigos, Emmanouel, 2021. "A shortage pricing mechanism for capacity remuneration with simulation for the Greek electricity balancing market," Utilities Policy, Elsevier, vol. 71(C).
    18. Cave, Martin, 2013. "Extending competition in network industries: Can input markets circumvent the need for an administered access regime?," Utilities Policy, Elsevier, vol. 27(C), pages 82-92.
    19. Ahmed, Faraedoon & Al Kez, Dlzar & McLoone, Seán & Best, Robert James & Cameron, Ché & Foley, Aoife, 2023. "Dynamic grid stability in low carbon power systems with minimum inertia," Renewable Energy, Elsevier, vol. 210(C), pages 486-506.
    20. Shair, Jan & Li, Haozhi & Hu, Jiabing & Xie, Xiaorong, 2021. "Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:10:y:2021:i:5:n:e399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.