IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v97y2016icp439-449.html
   My bibliography  Save this article

Flexible investment under uncertainty in smart distribution networks with demand side response: Assessment framework and practical implementation

Author

Listed:
  • Schachter, Jonathan A.
  • Mancarella, Pierluigi
  • Moriarty, John
  • Shaw, Rita

Abstract

Classical deterministic models applied to investment valuation in distribution networks may not be adequate for a range of real-world decision-making scenarios as they effectively ignore the uncertainty found in the most important variables driving network planning (e.g., load growth). As greater uncertainty is expected from growing distributed energy resources in distribution networks, there is an increasing risk of investing in too much or too little network capacity and hence causing the stranding and inefficient use of network assets; these costs are then passed on to the end-user. An alternative emerging solution in the context of smart grid development is to release untapped network capacity through Demand-Side Response (DSR). However, to date there is no approach able to quantify the value of ‘smart’ DSR solutions against ‘conventional’ asset-heavy investments. On these premises, this paper presents a general real options framework and a novel probabilistic tool for the economic assessment of DSR for smart distribution network planning under uncertainty, which allows the modeling and comparison of multiple investment strategies, including DSR and capacity reinforcements, based on different cost and risk metrics.

Suggested Citation

  • Schachter, Jonathan A. & Mancarella, Pierluigi & Moriarty, John & Shaw, Rita, 2016. "Flexible investment under uncertainty in smart distribution networks with demand side response: Assessment framework and practical implementation," Energy Policy, Elsevier, vol. 97(C), pages 439-449.
  • Handle: RePEc:eee:enepol:v:97:y:2016:i:c:p:439-449
    DOI: 10.1016/j.enpol.2016.07.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516303998
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.07.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carpaneto, Enrico & Chicco, Gianfranco & Mancarella, Pierluigi & Russo, Angela, 2011. "Cogeneration planning under uncertainty: Part I: Multiple time frame approach," Applied Energy, Elsevier, vol. 88(4), pages 1059-1067, April.
    2. Davis, Graham A. & Owens, Brandon, 2003. "Optimizing the level of renewable electric R&D expenditures using real options analysis," Energy Policy, Elsevier, vol. 31(15), pages 1589-1608, December.
    3. Poudineh, Rahmatallah & Jamasb, Tooraj, 2014. "Distributed generation, storage, demand response and energy efficiency as alternatives to grid capacity enhancement," Energy Policy, Elsevier, vol. 67(C), pages 222-231.
    4. Schachter, J.A. & Mancarella, P., 2016. "A critical review of Real Options thinking for valuing investment flexibility in Smart Grids and low carbon energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 261-271.
    5. Or Shachar & Jennifer La'O & Anna Costello & Nina Boyarchenko, 2015. "Credit Risk and Interdealer Networks," 2015 Meeting Papers 1048, Society for Economic Dynamics.
    6. Yang, Ming & Blyth, William & Bradley, Richard & Bunn, Derek & Clarke, Charlie & Wilson, Tom, 2008. "Evaluating the power investment options with uncertainty in climate policy," Energy Economics, Elsevier, vol. 30(4), pages 1933-1950, July.
    7. Boyle, Glenn & Guthrie, Graeme & Meade, Richard, 2006. "Real Options and Transmission Investment: the New Zealand Grid Investment Test," Working Paper Series 3846, Victoria University of Wellington, The New Zealand Institute for the Study of Competition and Regulation.
    8. Bar-Ilan, Avner & Strange, William C, 1996. "Investment Lags," American Economic Review, American Economic Association, vol. 86(3), pages 610-622, June.
    9. Shaw, Rita & Attree, Mike & Jackson, Tim, 2010. "Developing electricity distribution networks and their regulation to support sustainable energy," Energy Policy, Elsevier, vol. 38(10), pages 5927-5937, October.
    10. Evert Meijers & Martijn Burger & Edward L. Glaeser & Giacomo A. M. Ponzetto & Yimei Zou, 2016. "Urban networks: Connecting markets, people, and ideas," Papers in Regional Science, Wiley Blackwell, vol. 95(1), pages 17-59, March.
    11. repec:elg:eechap:15034_3 is not listed on IDEAS
    12. Fuss, Sabine & Szolgayova, Jana & Obersteiner, Michael & Gusti, Mykola, 2008. "Investment under market and climate policy uncertainty," Applied Energy, Elsevier, vol. 85(8), pages 708-721, August.
    13. Marreco, Juliana de Moraes & Carpio, Lucio Guido Tapia, 2006. "Flexibility valuation in the Brazilian power system: A real options approach," Energy Policy, Elsevier, vol. 34(18), pages 3749-3756, December.
    14. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    15. Carpaneto, Enrico & Chicco, Gianfranco & Mancarella, Pierluigi & Russo, Angela, 2011. "Cogeneration planning under uncertainty. Part II: Decision theory-based assessment of planning alternatives," Applied Energy, Elsevier, vol. 88(4), pages 1075-1083, April.
    16. Cheng, Ching-Tsung & Lo, Shang-Lien & Lin, Tyrone T., 2011. "Applying real options analysis to assess cleaner energy development strategies," Energy Policy, Elsevier, vol. 39(10), pages 5929-5938, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Rebenaque, Olivier & Schmitt, Carlo & Schumann, Klemens & Dronne, Théo & Roques, Fabien, 2023. "Success of local flexibility market implementation: A review of current projects," Utilities Policy, Elsevier, vol. 80(C).
    3. Castellini, Marta & Di Corato, Luca & Moretto, Michele & Vergalli, Sergio, 2021. "Energy exchange among heterogeneous prosumers under price uncertainty," Energy Economics, Elsevier, vol. 104(C).
    4. Sonsaard, Parinya & Ketjoy, Nipon & Mensin, Yodthong, 2023. "Market strategy options to implement Thailand demand response program policy," Energy Policy, Elsevier, vol. 173(C).
    5. Heinrich, Carsten & Ziras, Charalampos & Syrri, Angeliki L.A. & Bindner, Henrik W., 2020. "EcoGrid 2.0: A large-scale field trial of a local flexibility market," Applied Energy, Elsevier, vol. 261(C).
    6. Fernando Salinas-Herrera & Ali Moeini & Innocent Kamwa, 2022. "Survey of Simulation Tools to Assess Techno-Economic Benefits of Smart Grid Technology in Integrated T&D Systems," Sustainability, MDPI, vol. 14(13), pages 1-36, July.
    7. Luis Alejandro Arias & Edwin Rivas & Francisco Santamaria & Victor Hernandez, 2018. "A Review and Analysis of Trends Related to Demand Response," Energies, MDPI, vol. 11(7), pages 1-24, June.
    8. Olivier Rebenaque & Carlo Schmitt & Klemens Schumann, 2022. "Trading in local markets: A review of concepts and challenges," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2022(2), pages 25-47.
    9. Osaru Agbonaye & Patrick Keatley & Ye Huang & Motasem Bani Mustafa & Neil Hewitt, 2020. "Design, Valuation and Comparison of Demand Response Strategies for Congestion Management," Energies, MDPI, vol. 13(22), pages 1-29, November.
    10. Marie-Cécile Alvarez-Herault & Jean-Pierre Dib & Oana Ionescu & Bertrand Raison, 2022. "Long-Term Planning of Electrical Distribution Grids: How Load Uncertainty and Flexibility Affect the Investment Timing," Energies, MDPI, vol. 15(16), pages 1-27, August.
    11. Rohit Kumar Singh & Sachin Modgil & Padmanav Acharya, 2019. "Assessment of Supply Chain Flexibility Using System Dynamics Modeling," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 20(1), pages 39-63, December.
    12. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Lasantha Meegahapola & Pierluigi Mancarella & Damian Flynn & Rodrigo Moreno, 2021. "Power system stability in the transition to a low carbon grid: A techno‐economic perspective on challenges and opportunities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    14. Alirezazadeh, Atefeh & Rashidinejad, Masoud & Abdollahi, Amir & Afzali, Peyman & Bakhshai, Alireza, 2020. "A new flexible model for generation scheduling in a smart grid," Energy, Elsevier, vol. 191(C).
    15. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N. & Burmester, Daniel, 2021. "Strategic design optimisation of multi-energy-storage-technology micro-grids considering a two-stage game-theoretic market for demand response aggregation," Applied Energy, Elsevier, vol. 287(C).
    16. Yang, Xinhe & Wang, Xiuli & Lu, Zhilin & Liang, Ziyang & Gu, Chenghong & Li, Furong, 2024. "Distribution network tariff design: Facilitate flexible resource under uncertain future energy scenarios," Energy Policy, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schachter, J.A. & Mancarella, P., 2016. "A critical review of Real Options thinking for valuing investment flexibility in Smart Grids and low carbon energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 261-271.
    2. Zhang, Mingming & Liu, Liyun & Wang, Qunwei & Zhou, Dequn, 2020. "Valuing investment decisions of renewable energy projects considering changing volatility," Energy Economics, Elsevier, vol. 92(C).
    3. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
    4. Zhang, M.M. & Wang, Qunwei & Zhou, Dequn & Ding, H., 2019. "Evaluating uncertain investment decisions in low-carbon transition toward renewable energy," Applied Energy, Elsevier, vol. 240(C), pages 1049-1060.
    5. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.
    6. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    7. Zhang, M.M. & Zhou, P. & Zhou, D.Q., 2016. "A real options model for renewable energy investment with application to solar photovoltaic power generation in China," Energy Economics, Elsevier, vol. 59(C), pages 213-226.
    8. Romano, Teresa & Fumagalli, Elena, 2018. "Greening the power generation sector: Understanding the role of uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 272-286.
    9. Zhang, Mingming & Zhou, Dequn & Zhou, Peng, 2014. "A real option model for renewable energy policy evaluation with application to solar PV power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 944-955.
    10. Kang, Sang Baum & Létourneau, Pascal, 2016. "Investors’ reaction to the government credibility problem: A real option analysis of emission permit policy risk," Energy Economics, Elsevier, vol. 54(C), pages 96-107.
    11. Zhu, Lei & Fan, Ying, 2011. "A real options–based CCS investment evaluation model: Case study of China’s power generation sector," Applied Energy, Elsevier, vol. 88(12), pages 4320-4333.
    12. Linnerud, Kristin & Andersson, Ane Marte & Fleten, Stein-Erik, 2014. "Investment timing under uncertain renewable energy policy: An empirical study of small hydropower projects," Energy, Elsevier, vol. 78(C), pages 154-164.
    13. Balibrea-Iniesta, José & Rodríguez-Monroy, Carlos & Núñez-Guerrero, Yilsy María, 2021. "Economic analysis of the German regulation for electrical generation projects from biogas applying the theory of real options," Energy, Elsevier, vol. 231(C).
    14. Moon, Yongma & Baran, Mesut, 2018. "Economic analysis of a residential PV system from the timing perspective: A real option model," Renewable Energy, Elsevier, vol. 125(C), pages 783-795.
    15. Brauneis, Alexander & Mestel, Roland & Palan, Stefan, 2013. "Inducing low-carbon investment in the electric power industry through a price floor for emissions trading," Energy Policy, Elsevier, vol. 53(C), pages 190-204.
    16. Zhang, Dongjie & Liu, Pei & Ma, Linwei & LI, Zheng, 2013. "A multi-period optimization model for planning of China's power sector with consideration of carbon dioxide mitigation—The importance of continuous and stable carbon mitigation policy," Energy Policy, Elsevier, vol. 58(C), pages 319-328.
    17. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    18. Poudineh, Rahmatallah & Jamasb, Tooraj, 2016. "Determinants of investment under incentive regulation: The case of the Norwegian electricity distribution networks," Energy Economics, Elsevier, vol. 53(C), pages 193-202.
    19. Jos Balibrea-Iniesta & Antonio S nchez-Soli o & Antonio Lara-Galera, 2015. "Application of Real Options Theory to the Assessment of Public Incentives for Onshore Wind Energy Development in Spain," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 791-800.
    20. Hervé-Mignucci, Morgan, 2011. "Rôle du signal prix du carbone sur les décisions d'investissement des entreprises," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/8200 edited by Keppler, Jan Horst.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:97:y:2016:i:c:p:439-449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.