IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i4p1759-d1595011.html
   My bibliography  Save this article

Electricity Demand Characteristics in the Energy Transition Pathway Under the Carbon Neutrality Goal for China

Author

Listed:
  • Chenmin He

    (Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology, Hangzhou 310014, China
    Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou 310014, China)

  • Kejun Jiang

    (Energy Research Institute, Chinese Academy of Macroeconomic Research, Beijing 100038, China)

  • Pianpian Xiang

    (Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China)

  • Yujie Jiao

    (Department of Environmental Science, Beijing University of Technology, Beijing 100124, China)

  • Mingzhu Li

    (Department of Environmental Science, Beijing University of Technology, Beijing 100124, China)

Abstract

The energy transition towards achieving carbon neutrality is marked by the decarbonization of the power system and a high degree of electrification in end-use sectors. The decarbonization of the power system primarily relies on large-scale renewable energy, nuclear power, and fossil fuel-based power with carbon capture technologies. This structure of power supply introduces significant uncertainty in electricity supply. Due to the technological progress in end-use sectors and spatial reallocation of industries in China, the load curve and power supply curve is very different today. However, most studies’ analyses of future electricity systems are based on today’s load curve, which could be misleading when seeking to understand future electricity systems. Therefore, it is essential to thoroughly analyze changes in end-use load curves to better align electricity demand with supply. This paper analyzes the characteristics of electricity demand load under China’s future energy transition and economic transformation pathways using the Integrated Energy and Environment Policy Assessment model of China (IPAC). It examines the electricity and energy usage characteristics of various sectors in six typical regions, provides 24-h load curves for two representative days, and evaluates the effectiveness of demand-side response in selected provinces in 2050. The study reveals that, with the transition of the energy system and the industrial relocation during economic transformation, the load curves in China’s major regions by 2050 will differ notably from those of today, with distinct characteristics emerging across different regions. With the costs of solar photovoltaic (PV) and wind power declining in the future, the resulting electricity price will also differ significantly from today. Daytime electricity prices will be notably lower than those during the evening peak, as the decrease in solar PV and wind power output leads to a significant increase in electricity costs. This pricing structure is expected to drive a strong demand-side response. Demand-side response can significantly improve the alignment between load curves and power supply.

Suggested Citation

  • Chenmin He & Kejun Jiang & Pianpian Xiang & Yujie Jiao & Mingzhu Li, 2025. "Electricity Demand Characteristics in the Energy Transition Pathway Under the Carbon Neutrality Goal for China," Sustainability, MDPI, vol. 17(4), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1759-:d:1595011
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/4/1759/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/4/1759/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    2. Mayer, Martin János & Biró, Bence & Szücs, Botond & Aszódi, Attila, 2023. "Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning," Applied Energy, Elsevier, vol. 336(C).
    3. Jiaqi Liu & Hongji Hu & Samson S. Yu & Hieu Trinh, 2023. "Virtual Power Plant with Renewable Energy Sources and Energy Storage Systems for Sustainable Power Grid-Formation, Control Techniques and Demand Response," Energies, MDPI, vol. 16(9), pages 1-28, April.
    4. Ibrahim M. Saleh & Andrey Postnikov & Corneliu Arsene & Argyrios C. Zolotas & Chris Bingham & Ronald Bickerton & Simon Pearson, 2018. "Impact of Demand Side Response on a Commercial Retail Refrigeration System," Energies, MDPI, vol. 11(2), pages 1-18, February.
    5. Ahmed, Faraedoon & Al Kez, Dlzar & McLoone, Seán & Best, Robert James & Cameron, Ché & Foley, Aoife, 2023. "Dynamic grid stability in low carbon power systems with minimum inertia," Renewable Energy, Elsevier, vol. 210(C), pages 486-506.
    6. Lasantha Meegahapola & Pierluigi Mancarella & Damian Flynn & Rodrigo Moreno, 2021. "Power system stability in the transition to a low carbon grid: A techno‐economic perspective on challenges and opportunities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    7. Shen, Xiaojun & Li, Xingyi & Yuan, Jiahai & Jin, Yu, 2022. "A hydrogen-based zero-carbon microgrid demonstration in renewable-rich remote areas: System design and economic feasibility," Applied Energy, Elsevier, vol. 326(C).
    8. Hou, Qingchun & Zhang, Ning & Du, Ershun & Miao, Miao & Peng, Fei & Kang, Chongqing, 2019. "Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China," Applied Energy, Elsevier, vol. 242(C), pages 205-215.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanuel Ejuh Che & Kang Roland Abeng & Chu Donatus Iweh & George J. Tsekouras & Armand Fopah-Lele, 2025. "The Impact of Integrating Variable Renewable Energy Sources into Grid-Connected Power Systems: Challenges, Mitigation Strategies, and Prospects," Energies, MDPI, vol. 18(3), pages 1-31, February.
    2. Debnath, Kumar Biswajit & Jenkins, David P. & Patidar, Sandhya & Peacock, Andrew D., 2024. "Remote work might unlock solar PV's potential of cracking the ‘Duck Curve’," Applied Energy, Elsevier, vol. 367(C).
    3. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    4. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    5. Oluwafemi Emmanuel Oni & Omowunmi Mary Longe, 2023. "Analysis of Secondary Controller on MTDC Link with Solar PV Integration for Inter-Area Power Oscillation Damping," Energies, MDPI, vol. 16(17), pages 1-18, August.
    6. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    7. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    8. Zhang, Xiao-Yan & Wang, Cenfeng & Xiao, Jiang-Wen & Wang, Yan-Wu, 2025. "A transactive energy cooperation scheduling for hydrogen-based community microgrid with refueling preferences of hydrogen vehicles," Applied Energy, Elsevier, vol. 377(PC).
    9. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & David Celeita & George J. Anders, 2024. "A Stochastic Decision-Making Tool Suite for Distributed Energy Resources Integration in Energy Markets," Energies, MDPI, vol. 17(10), pages 1-28, May.
    10. Albert Poulose & Soobae Kim, 2023. "Transient Stability Analysis and Enhancement Techniques of Renewable-Rich Power Grids," Energies, MDPI, vol. 16(5), pages 1-30, March.
    11. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    12. Mughees, Neelam & Jaffery, Mujtaba Hussain & Mughees, Anam & Ansari, Ejaz Ahmad & Mughees, Abdullah, 2023. "Reinforcement learning-based composite differential evolution for integrated demand response scheme in industrial microgrids," Applied Energy, Elsevier, vol. 342(C).
    13. Alain Aoun & Mehdi Adda & Adrian Ilinca & Mazen Ghandour & Hussein Ibrahim, 2024. "Optimizing Virtual Power Plant Management: A Novel MILP Algorithm to Minimize Levelized Cost of Energy, Technical Losses, and Greenhouse Gas Emissions," Energies, MDPI, vol. 17(16), pages 1-23, August.
    14. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    15. Montuori, Lina & Alcázar-Ortega, Manuel, 2021. "Demand response strategies for the balancing of natural gas systems: Application to a local network located in The Marches (Italy)," Energy, Elsevier, vol. 225(C).
    16. Emmanuel Ebinyu & Omar Abdel-Rahim & Diaa-Eldin A. Mansour & Masahito Shoyama & Sobhy M. Abdelkader, 2023. "Grid-Forming Control: Advancements towards 100% Inverter-Based Grids—A Review," Energies, MDPI, vol. 16(22), pages 1-45, November.
    17. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
    18. Wang, Bo & Deng, Nana & Li, Haoxiang & Zhao, Wenhui & Liu, Jie & Wang, Zhaohua, 2021. "Effect and mechanism of monetary incentives and moral suasion on residential peak-hour electricity usage," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    19. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
    20. Li, Ling-Ling & Ji, Bing-Xiang & Li, Zhong-Tao & Lim, Ming K. & Sethanan, Kanchana & Tseng, Ming-Lang, 2025. "Microgrid energy management system with degradation cost and carbon trading mechanism: A multi-objective artificial hummingbird algorithm," Applied Energy, Elsevier, vol. 378(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1759-:d:1595011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.