IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6295-d1228439.html
   My bibliography  Save this article

Analysis of Secondary Controller on MTDC Link with Solar PV Integration for Inter-Area Power Oscillation Damping

Author

Listed:
  • Oluwafemi Emmanuel Oni

    (Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg 2006, South Africa)

  • Omowunmi Mary Longe

    (Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg 2006, South Africa)

Abstract

Integration of renewable energy sources is important in limiting the continuous environmental degradation and emissions caused by energy generation from fossil fuels and thus becoming a better alternative for a large-scale power mix. However, an adequate analysis of the interaction with the alternating current (AC) network during network disturbance, especially during inter-area power (IAP) oscillations is needed. Insufficient damping of oscillations can significantly impact the reliability and effective operation of a whole power system. Therefore, this paper focuses on the stability of the modified Kundur two-area four-machine (MKTAFM) system. A robust secondary controller is proposed and implemented on a line commutated converter (LCC)-based multi-terminal high voltage direct current (MTDC) system. The solution consists of a local generator controller and the LCC MTDC (LMTDC) system, voltage-dependent current order limiter, and extinction angle controller. The proposed robust controller is designed for the LMTDC systems to further dampen the inter-area power oscillations. Three operational scenarios were implemented in this study, which are the local generator controller and double circuits AC line, local generator controller with LMTDC controllers, and local generator controller with LMTDC controllers and secondary controller. The simulation result carried out on PSCAD/EMTDC recorded better damping of the inter-area power oscillation with LMTDC. A considerable improvement of 100% damping of the IAP oscillations was observed when a secondary controller was implemented on the LMTDC.

Suggested Citation

  • Oluwafemi Emmanuel Oni & Omowunmi Mary Longe, 2023. "Analysis of Secondary Controller on MTDC Link with Solar PV Integration for Inter-Area Power Oscillation Damping," Energies, MDPI, vol. 16(17), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6295-:d:1228439
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6295/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6295/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Endeshaw Solomon & Baseem Khan & Ilyes Boulkaibet & Bilel Neji & Nadhira Khezami & Ahmed Ali & Om Prakash Mahela & Alina Eugenia Pascual Barrera, 2023. "Mitigating Low-Frequency Oscillations and Enhancing the Dynamic Stability of Power System Using Optimal Coordination of Power System Stabilizer and Unified Power Flow Controller," Sustainability, MDPI, vol. 15(8), pages 1-29, April.
    2. Ahmed, Faraedoon & Al Kez, Dlzar & McLoone, Seán & Best, Robert James & Cameron, Ché & Foley, Aoife, 2023. "Dynamic grid stability in low carbon power systems with minimum inertia," Renewable Energy, Elsevier, vol. 210(C), pages 486-506.
    3. Shair, Jan & Li, Haozhi & Hu, Jiabing & Xie, Xiaorong, 2021. "Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    2. Emmanuel Ebinyu & Omar Abdel-Rahim & Diaa-Eldin A. Mansour & Masahito Shoyama & Sobhy M. Abdelkader, 2023. "Grid-Forming Control: Advancements towards 100% Inverter-Based Grids—A Review," Energies, MDPI, vol. 16(22), pages 1-45, November.
    3. Jonasson, Erik & Fjellstedt, Christoffer & Temiz, Irina, 2024. "Grid impact of co-located offshore renewable energy sources," Renewable Energy, Elsevier, vol. 230(C).
    4. Imed Khabbouchi & Dhaou Said & Aziz Oukaira & Idir Mellal & Lyes Khoukhi, 2023. "Machine Learning and Game-Theoretic Model for Advanced Wind Energy Management Protocol (AWEMP)," Energies, MDPI, vol. 16(5), pages 1-15, February.
    5. Giorgio M. Giannuzzi & Viktoriya Mostova & Cosimo Pisani & Salvatore Tessitore & Alfredo Vaccaro, 2022. "Enabling Technologies for Enhancing Power System Stability in the Presence of Converter-Interfaced Generators," Energies, MDPI, vol. 15(21), pages 1-13, October.
    6. Ahmad Amiruddin & Roger Dargaville & Ross Gawler, 2024. "Optimal Integration of Renewable Energy, Energy Storage, and Indonesia’s Super Grid," Energies, MDPI, vol. 17(20), pages 1-29, October.
    7. Li, Jingxian & Ma, Ping & Wang, Cong & Zhang, Shaohua & Zhang, Hongli, 2024. "Dynamics analysis and adaptive neural network command filtering excitation control of stochastic power system," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    8. Uvini Perera & Amanullah Maung Than Oo & Ramon Zamora, 2022. "Sub Synchronous Oscillations under High Penetration of Renewables—A Review of Existing Monitoring and Damping Methods, Challenges, and Research Prospects," Energies, MDPI, vol. 15(22), pages 1-23, November.
    9. Pepiciello, Antonio & Domínguez-García, José Luis, 2024. "Small-signal stability analysis of uncertain power systems: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    10. Huang, J. & Iglesias, G., 2025. "Forecasting the integration of offshore renewables into the onshore energy system up to 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    11. Ahmed, Faraedoon & Foley, Aoife & McLoone, Sean & Best, Robert & Lund, Henrik & Al Kez, Dlzar, 2025. "Sectoral coupling pathway towards a 100 % renewable energy system for Northern Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    12. Parrado-Hernando, Gonzalo & Herc, Luka & Feijoo, Felipe & Capellán-Pérez, Iñigo, 2024. "Capturing features of hourly-resolution energy models in an integrated assessment model: An application to the EU27 region," Energy, Elsevier, vol. 304(C).
    13. Yan Zhang & Yang Shen & Rui Zhu & Zhu Chen & Tao Guo & Quan Lv, 2025. "Two-Stage Real-Time Frequency Regulation Strategy of Combined Heat and Power Units with Energy Storage," Energies, MDPI, vol. 18(8), pages 1-21, April.
    14. Ahmed, Faraedoon & Foley, Aoife & Dowds, Carole & Johnston, Barry & Al Kez, Dlzar, 2024. "Assessing the engineering, environmental and economic aspects of repowering onshore wind energy," Energy, Elsevier, vol. 301(C).
    15. Xiao, Kun & Yu, Bolin & Cheng, Lei & Li, Fei & Fang, Debin, 2022. "The effects of CCUS combined with renewable energy penetration under the carbon peak by an SD-CGE model: Evidence from China," Applied Energy, Elsevier, vol. 321(C).
    16. Noh, Jinah & Kim, Jip & Kim, Young-Jin & Lee, Kwang Y. & Beak, Seung-Mook & Park, Jung-Wook, 2025. "Compensation strategies for renewable energy curtailment in South Korea," Energy Policy, Elsevier, vol. 199(C).
    17. Ryszard Bartnik & Dariusz Pączko, 2021. "Methodology for Analysing Electricity Generation Unit Costs in Renewable Energy Sources (RES)," Energies, MDPI, vol. 14(21), pages 1-15, November.
    18. Chenmin He & Kejun Jiang & Pianpian Xiang & Yujie Jiao & Mingzhu Li, 2025. "Electricity Demand Characteristics in the Energy Transition Pathway Under the Carbon Neutrality Goal for China," Sustainability, MDPI, vol. 17(4), pages 1-16, February.
    19. Kezhen Liu & Yumin Mao & Xueou Chen & Jiedong He & Min Dong, 2023. "Research on Dynamic Modeling and Parameter Identification of the Grid-Connected PV Power Generation System," Energies, MDPI, vol. 16(10), pages 1-17, May.
    20. Vadim A. Golubev & Viktoria A. Verbnikova & Ilia A. Lopyrev & Daria D. Voznesenskaya & Rashid N. Alimov & Olga V. Novikova & Evgenii A. Konnikov, 2021. "Energy Evolution: Forecasting the Development of Non-Conventional Renewable Energy Sources and Their Impact on the Conventional Electricity System," Sustainability, MDPI, vol. 13(22), pages 1-19, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6295-:d:1228439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.