IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v54y2005i2p287-299.html
   My bibliography  Save this article

A threshold autoregressive model for wholesale electricity prices

Author

Listed:
  • B. Ricky Rambharat
  • Anthony E. Brockwell
  • Duane J. Seppi

Abstract

We introduce a discrete time model for electricity prices which accounts for both transitory spikes and temperature effects. The model allows for different rates of mean reversion: one for weather events, one around price jumps and another for the remainder of the process. We estimate the model by using a Markov chain Monte Carlo approach with 3 years of daily data from Allegheny County, Pennsylvania. We show that our model outperforms existing stochastic jump diffusion models for this data set. Results also demonstrate the importance of model parameters corresponding to both the temperature effect and the multilevel mean reversion rate. Copyright 2005 Royal Statistical Society.

Suggested Citation

  • B. Ricky Rambharat & Anthony E. Brockwell & Duane J. Seppi, 2005. "A threshold autoregressive model for wholesale electricity prices," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(2), pages 287-299.
  • Handle: RePEc:bla:jorssc:v:54:y:2005:i:2:p:287-299
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9876.2005.00484.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huisman, Ronald & Mahieu, Ronald, 2003. "Regime jumps in electricity prices," Energy Economics, Elsevier, vol. 25(5), pages 425-434, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Misiorek Adam & Trueck Stefan & Weron Rafal, 2006. "Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-36, September.
    2. Le Pen, Yannick & Sévi, Benoît, 2010. "Volatility transmission and volatility impulse response functions in European electricity forward markets," Energy Economics, Elsevier, vol. 32(4), pages 758-770, July.
    3. Stephen Machin & Olivier Marie & Sunčica Vujić, 2012. "Youth Crime and Education Expansion," German Economic Review, Verein für Socialpolitik, vol. 13(4), pages 366-384, November.
    4. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    5. Antonio Bello & Javier Reneses & Antonio Muñoz, 2016. "Medium-Term Probabilistic Forecasting of Extremely Low Prices in Electricity Markets: Application to the Spanish Case," Energies, MDPI, Open Access Journal, vol. 9(3), pages 1-27, March.
    6. Carlo Lucheroni, 2012. "A hybrid SETARX model for spikes in tight electricity markets," Operations Research and Decisions, Wroclaw University of Technology, Institute of Organization and Management, vol. 1, pages 13-49.
    7. Niu, Shilei & Insley, Margaret, 2016. "An options pricing approach to ramping rate restrictions at hydro power plants," Journal of Economic Dynamics and Control, Elsevier, vol. 63(C), pages 25-52.
    8. Eichler, M. & Türk, D., 2013. "Fitting semiparametric Markov regime-switching models to electricity spot prices," Energy Economics, Elsevier, vol. 36(C), pages 614-624.
    9. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601.
    10. Rafal Weron & Adam Misiorek, 2006. "Short-term electricity price forecasting with time series models: A review and evaluation," HSC Research Reports HSC/06/01, Hugo Steinhaus Center, Wroclaw University of Technology.
    11. Luigi Grossi & Fany Nan, 2017. "Forecasting electricity prices through robust nonlinear models," Working Papers 06/2017, University of Verona, Department of Economics.
    12. repec:gam:jeners:v:9:y:2016:i:3:p:193:d:65782 is not listed on IDEAS
    13. Erlwein, Christina & Benth, Fred Espen & Mamon, Rogemar, 2010. "HMM filtering and parameter estimation of an electricity spot price model," Energy Economics, Elsevier, vol. 32(5), pages 1034-1043, September.
    14. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Forecasting electricity prices: The impact of fundamentals and time-varying coefficients," International Journal of Forecasting, Elsevier, vol. 24(4), pages 764-785.
    15. Eichler Michael & Grothe Oliver & Tuerk Dennis & Manner Hans, 2012. "Modeling spike occurrences in electricity spot prices for forecasting," Research Memorandum 029, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    16. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Intra-day and regime-switching dynamics in electricity price formation," Energy Economics, Elsevier, vol. 30(4), pages 1776-1797, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:54:y:2005:i:2:p:287-299. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.