IDEAS home Printed from https://ideas.repec.org/a/ags/aareaj/229821.html
   My bibliography  Save this article

Integrated spatial dependence into Stochastic Frontier Analysis

Author

Listed:
  • Areal, Francisco Jose
  • Balcombe, Kelvin
  • Tiffin, Richard

Abstract

An approach to incorporate spatial dependence into stochastic frontier analysis is developed and applied to a sample of 215 dairy farms in England and Wales. A number of alternative specifications for the spatial weight matrix are used to analyse the effect of these on the estimation of spatial dependence. Estimation is conducted using a Bayesian approach and results indicate that spatial dependence is present when explaining technical inefficiency.

Suggested Citation

  • Areal, Francisco Jose & Balcombe, Kelvin & Tiffin, Richard, 2012. "Integrated spatial dependence into Stochastic Frontier Analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 56(4), pages 1-21, December.
  • Handle: RePEc:ags:aareaj:229821
    DOI: 10.22004/ag.econ.229821
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/229821/files/j.1467-8489.2012.00597.x.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.229821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Viliam Druska & William C. Horrace, 2004. "Generalized Moments Estimation for Spatial Panel Data: Indonesian Rice Farming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(1), pages 185-198.
    2. van den Broeck, Julien & Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1994. "Stochastic frontier models : A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 61(2), pages 273-303, April.
    3. Garth Holloway & Ma. Lucila A. Lapar, 2007. "How Big is Your Neighbourhood? Spatial Implications of Market Participation Among Filipino Smallholders," Journal of Agricultural Economics, Wiley Blackwell, vol. 58(1), pages 37-60, February.
    4. O'Donnell, Christopher J. & Coelli, Timothy J., 2005. "A Bayesian approach to imposing curvature on distance functions," Journal of Econometrics, Elsevier, vol. 126(2), pages 493-523, June.
    5. Fernandez, Carmen & Koop, Gary & Steel, Mark, 2000. "A Bayesian analysis of multiple-output production frontiers," Journal of Econometrics, Elsevier, vol. 98(1), pages 47-79, September.
    6. Brummer, B. & Glauben, T. & Lu, W., 2006. "Policy reform and productivity change in Chinese agriculture: A distance function approach," Journal of Development Economics, Elsevier, vol. 81(1), pages 61-79, October.
    7. Alexandra Schmidt & Ajax Moreira & Steven Helfand & Thais Fonseca, 2009. "Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 31(2), pages 101-112, April.
    8. Nancy E. Bockstael, 1996. "Modeling Economics and Ecology: The Importance of a Spatial Perspective," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(5), pages 1168-1180.
    9. Belen Iraizoz & Isabel Bardaji & Manuel Rapun, 2005. "The Spanish beef sector in the 1990s: impact of the BSE crisis on efficiency and profitability," Applied Economics, Taylor & Francis Journals, vol. 37(4), pages 473-484.
    10. Anselin, Luc, 2002. "Under the hood : Issues in the specification and interpretation of spatial regression models," Agricultural Economics, Blackwell, vol. 27(3), pages 247-267, November.
    11. Michael D. Weiss, 1996. "Precision Farming and Spatial Economic Analysis: Research Challenges and Opportunities," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(5), pages 1275-1280.
    12. Bernhard Brümmer & Thomas Glauben & Geert Thijssen, 2002. "Decomposition of Productivity Growth Using Distance Functions: The Case of Dairy Farms in Three European Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(3), pages 628-644.
    13. Luis Orea, 2002. "Parametric Decomposition of a Generalized Malmquist Productivity Index," Journal of Productivity Analysis, Springer, vol. 18(1), pages 5-22, July.
    14. Kathleen P. Bell & Timothy J. Dalton, 2007. "Spatial Economic Analysis in Data‐Rich Environments," Journal of Agricultural Economics, Wiley Blackwell, vol. 58(3), pages 487-501, September.
    15. Kathleen P. Bell & Nancy E. Bockstael, 2000. "Applying the Generalized-Moments Estimation Approach to Spatial Problems Involving Microlevel Data," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 72-82, February.
    16. Coelli, Tim & Perelman, Sergio, 1999. "A comparison of parametric and non-parametric distance functions: With application to European railways," European Journal of Operational Research, Elsevier, vol. 117(2), pages 326-339, September.
    17. Brian Roe & Elena G. Irwin & Jeff S. Sharp, 2002. "Pigs in Space: Modeling the Spatial Structure of Hog Production in Traditional and Nontraditional Production Regions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(2), pages 259-278.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Jin & Lung-fei Lee, 2020. "Asymptotic properties of a spatial autoregressive stochastic frontier model," Journal in Spatial Econometrics, Springer, vol. 1(1), pages 1-40, December.
    2. MCarmen Martínez†Victoria & Mariluz Maté Sánchez†Val & Narciso Arcas†Lario, 2018. "Spatial determinants of productivity growth on agri†food Spanish firms: a comparison between cooperatives and investor†owned firms," Agricultural Economics, International Association of Agricultural Economists, vol. 49(2), pages 213-223, March.
    3. Pede, Valerien O. & McKinley, Justin & Singbo, Alphonse & Kajisa, Kei, 2015. "Spatial Dependency of Technical Efficiency in Rice Farming: The Case of Bohol, Philippines," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205456, Agricultural and Applied Economics Association.
    4. Yiorgos Gadanakis & Francisco José Areal, 2020. "Accounting for rainfall and the length of growing season in technical efficiency analysis," Operational Research, Springer, vol. 20(4), pages 2583-2608, December.
    5. Skevas, Ioannis, 2020. "Inference in the spatial autoregressive efficiency model with an application to Dutch dairy farms," European Journal of Operational Research, Elsevier, vol. 283(1), pages 356-364.
    6. Zenaida M Sumalde & Donald B. Villanueva & Valerien O Pede & Yolanda T Garcia & U-Primo E Rodriguez, 2017. "Assessment of Neighborhood and Spillover Effects on Technical Efficiency of Irrigated Rice Farmers," Asian Journal of Agriculture and Development, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), vol. 14(2), pages 103-125, December.
    7. Fusco, Elisa & Allegrini, Veronica, 2020. "The role of spatial interdependence in local government cost efficiency: An application to waste Italian sector," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    8. Orea, Luis & Álvarez, Inmaculada C., 2019. "A new stochastic frontier model with cross-sectional effects in both noise and inefficiency terms," Journal of Econometrics, Elsevier, vol. 213(2), pages 556-577.
    9. Federico Belotti & Giuseppe Ilardi & Andrea Piano Mortari, 2019. "Estimation of Stochastic Frontier Panel Data Models with Spatial Inefficiency," CEIS Research Paper 459, Tor Vergata University, CEIS, revised 30 May 2019.
    10. Frederic Ang & Pieter Jan Kerstens, 2016. "To Mix or Specialise? A Coordination Productivity Indicator for English and Welsh farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(3), pages 779-798, September.
    11. Orea, Luis & Álvarez, Inmaculada C., 2019. "Spatial Production Economics," Efficiency Series Papers 2019/06, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    12. Ioannis Skevas & Alfons Oude Lansink, 2020. "Dynamic Inefficiency and Spatial Spillovers in Dutch Dairy Farming," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(3), pages 742-759, September.
    13. A. G. Billé & C. Salvioni & R. Benedetti, 2018. "Modelling spatial regimes in farms technologies," Journal of Productivity Analysis, Springer, vol. 49(2), pages 173-185, June.
    14. Laureti, Tiziana & Benedetti, Ilaria & Branca, Giacomo, 2021. "Water use efficiency and public goods conservation: A spatial stochastic frontier model applied to irrigation in Southern Italy," Socio-Economic Planning Sciences, Elsevier, vol. 73(C).
    15. Klein, Nadja & Herwartz, Helmut & Kneib, Thomas, 2020. "Modelling regional patterns of inefficiency: A Bayesian approach to geoadditive panel stochastic frontier analysis with an application to cereal production in England and Wales," Journal of Econometrics, Elsevier, vol. 214(2), pages 513-539.
    16. Vidoli, Francesco & Canello, Jacopo, 2016. "Controlling for spatial heterogeneity in nonparametric efficiency models: An empirical proposal," European Journal of Operational Research, Elsevier, vol. 249(2), pages 771-783.
    17. Valerien O. Pede & Francisco J. Areal & Alphonse Singbo & Justin McKinley & Kei Kajisa, 2018. "Spatial dependency and technical efficiency: an application of a Bayesian stochastic frontier model to irrigated and rainfed rice farmers in Bohol, Philippines," Agricultural Economics, International Association of Agricultural Economists, vol. 49(3), pages 301-312, May.
    18. Mamiit, Rusyan Jill & Yanagida, John & Villanueva, Donald, 2020. "Farm locations and dwelling clusters: Do they make production and technical efficiency spatially contagious?," Food Policy, Elsevier, vol. 92(C).
    19. Theodoros Skevas & Jasper Grashuis, 2020. "Technical efficiency and spatial spillovers: Evidence from grain marketing cooperatives in the US Midwest," Agribusiness, John Wiley & Sons, Ltd., vol. 36(1), pages 111-126, January.
    20. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Areal, Francisco J. & Tiffin, Richard & Balcombe, Kelvin G., 2012. "Provision of environmental output within a multi-output distance function approach," Ecological Economics, Elsevier, vol. 78(C), pages 47-54.
    2. Areal, Francisco J. & Jones, Philip J. & Mortimer, Simon R. & Wilson, Paul, 2018. "Measuring sustainable intensification: Combining composite indicators and efficiency analysis to account for positive externalities in cereal production," Land Use Policy, Elsevier, vol. 75(C), pages 314-326.
    3. Pede, Valerien O. & McKinley, Justin & Singbo, Alphonse & Kajisa, Kei, 2015. "Spatial Dependency of Technical Efficiency in Rice Farming: The Case of Bohol, Philippines," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205456, Agricultural and Applied Economics Association.
    4. Francisco José Areal & Kelvin Balcombe & Richard Tiffin, 2012. "Integrating spatial dependence into Stochastic Frontier Analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 56(4), pages 521-541, October.
    5. David Maddison, 2009. "A Spatio‐temporal Model of Farmland Values," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(1), pages 171-189, February.
    6. Valerien O. Pede & Francisco J. Areal & Alphonse Singbo & Justin McKinley & Kei Kajisa, 2018. "Spatial dependency and technical efficiency: an application of a Bayesian stochastic frontier model to irrigated and rainfed rice farmers in Bohol, Philippines," Agricultural Economics, International Association of Agricultural Economists, vol. 49(3), pages 301-312, May.
    7. Anselin, Luc, 2002. "Under the hood : Issues in the specification and interpretation of spatial regression models," Agricultural Economics, Blackwell, vol. 27(3), pages 247-267, November.
    8. O'Donnell, Christopher J. & Coelli, Timothy J., 2005. "A Bayesian approach to imposing curvature on distance functions," Journal of Econometrics, Elsevier, vol. 126(2), pages 493-523, June.
    9. Lambert, Dayton M. & Malzer, Gary L. & Lowenberg-DeBoer, James, 2004. "General Moment And Quasi-Maximum Likelihood Estimation Of A Spatially Autocorrelated System Of Equations: An Empirical Example Using On-Farm Precision Agriculture Data," Staff Papers 28667, Purdue University, Department of Agricultural Economics.
    10. Brummer, B. & Glauben, T. & Lu, W., 2006. "Policy reform and productivity change in Chinese agriculture: A distance function approach," Journal of Development Economics, Elsevier, vol. 81(1), pages 61-79, October.
    11. Michaelides, Panayotis G. & Vouldis, Angelos T. & Tsionas, Efthymios G., 2010. "Globally flexible functional forms: The neural distance function," European Journal of Operational Research, Elsevier, vol. 206(2), pages 456-469, October.
    12. Mensah, Amos & Brümmer, Bernhard, 2016. "A multi-output production efficiency analysis of commercial banana farms in the Volta region of Ghana: A stochastic distance function approach," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 11(4), pages 1-12, December.
    13. Feng, Guohua & Serletis, Apostolos, 2010. "Efficiency, technical change, and returns to scale in large US banks: Panel data evidence from an output distance function satisfying theoretical regularity," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 127-138, January.
    14. Tecles, Patricia Langsch & Tabak, Benjamin M., 2010. "Determinants of bank efficiency: The case of Brazil," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1587-1598, December.
    15. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    16. Cullmann, Astrid & Zloczysti, Petra, 2013. "Towards an Efficient Use of R&D – Accounting for Heterogeneity in the OECD," CEPR Discussion Papers 9345, C.E.P.R. Discussion Papers.
    17. Ogundari, K. & Brümmer, Bernhard, 2011. "Estimating Technical Efficiency, Input substitution and complementary effects using Output Distance Function: A study of Cassava production in Nigeria," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 12(2).
    18. Ripoll-Zarraga, Ane Elixabete & Huderek-Glapska, Sonia, 2021. "Airports’ managerial human capital, ownership, and efficiency," Journal of Air Transport Management, Elsevier, vol. 92(C).
    19. Skevas, Ioannis & Emvalomatis, Grigorios & Brümmer, Bernhard, 2018. "Productivity growth measurement and decomposition under a dynamic inefficiency specification: The case of German dairy farms," European Journal of Operational Research, Elsevier, vol. 271(1), pages 250-261.
    20. Kellermann, Magnus A., 2015. "Total Factor Productivity Decomposition and Unobserved Heterogeneity in Stochastic Frontier Models," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 44(1), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aareaj:229821. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.