Advanced Search
MyIDEAS: Login

Comparison of Volatility Measures: a Risk Management Perspective

Contents:

Author Info

  • Christian T. Brownlees
  • Giampiero M. Gallo

Abstract

In this paper we address the issue of forecasting Value--at--Risk (VaR) using different volatility measures: realized volatility, bipower realized volatility, two-scales realized volatility, realized kernel, as well as the daily range. We propose a dynamic model with a flexible trend specification bonded with a penalized maximum likelihood estimation strategy: the P-spline multiplicative error model. Exploiting ultra-high-frequency data (UHFD) volatility measures, VaR predictive ability is considerably improved upon relative to a baseline GARCH but not so relative to the range; there are gains from modeling volatility trends and from using realized kernels that are robust to dependent microstructure noise. Copyright The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oupjournals.org, Oxford University Press.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1093/jjfinec/nbp009
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Society for Financial Econometrics in its journal Journal of Financial Econometrics.

Volume (Year): 8 (2010)
Issue (Month): 1 (Winter)
Pages: 29-56

as in new window
Handle: RePEc:oup:jfinec:v:8:y:2010:i:1:p:29-56

Contact details of provider:
Postal: Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK
Fax: 01865 267 985
Email:
Web page: http://jfec.oxfordjournals.org/
More information through EDIRC

Order Information:
Web: http://www.oup.co.uk/journals

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Pierre Giot & Sébastien Laurent, 2002. "Modelling Daily Value-at-Risk Using Realized Volatility and ARCH Type Models," Computing in Economics and Finance 2002 52, Society for Computational Economics.
  2. Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
  3. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
  4. Giacomini, Raffaella & Komunjer, Ivana, 2005. "Evaluation and Combination of Conditional Quantile Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
  5. Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
  6. Christensen, Kim & Podolskij, Mark, 2006. "Range-Based Estimation of Quadratic Variation," Technical Reports 2006,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  7. Leeb, Hannes & P tscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(01), pages 21-59, February.
  8. Rohit Deo & Clifford Hurvich & Yi Lu, 2005. "Forecasting Realized Volatility Using a Long Memory Stochastic Volatility Model: Estimation, Prediction and Seasonal Adjustment," Econometrics 0501002, EconWPA.
  9. Giampiero M. Gallo, 2001. "Modelling the Impact of Overnight Surprises on Intra-daily Volatility," Econometrics Working Papers Archive wp2001_02, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  10. Christian T. Brownlees & Giampiero Gallo, 2006. "Financial Econometric Analysis at Ultra–High Frequency: Data Handling Concerns," Econometrics Working Papers Archive wp2006_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  11. Granger, Clive W.J., 1998. "Extracting Information from Mega-Panels and High-Frequency Data," University of California at San Diego, Economics Working Paper Series qt17t2d9n6, Department of Economics, UC San Diego.
  12. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 53-89.
  13. Meddahi, N., 2001. "A Theoretical Comparison Between Integrated and Realized Volatilies," Cahiers de recherche 2001-26, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  14. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
  15. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
  16. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
  17. Roel Oomen, 2004. "Properties of Bias Corrected Realized Variance Under Alternative Sampling Schemes," Working Papers wp04-15, Warwick Business School, Finance Group.
  18. Neil Shephard & Ole E. Barndorff-Nielsen, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Series Working Papers 2006-W03, University of Oxford, Department of Economics.
  19. Hjort N.L. & Claeskens G., 2003. "Frequentist Model Average Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 879-899, January.
  20. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-83, November.
  21. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
  22. Eugenie Hol & Siem Jan Koopman & Borus Jungbacker, 2004. "Forecasting daily variability of the S\&P 100 stock index using historical, realised and implied volatility measurements," Computing in Economics and Finance 2004 342, Society for Computational Economics.
  23. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, Elsevier.
  24. White,Halbert, 1994. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521252805, October.
  25. Marx, Brian D. & Eilers, Paul H. C., 1998. "Direct generalized additive modeling with penalized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 28(2), pages 193-209, August.
  26. Susan Thomas & Mandira Sarma & Ajay Shah, 2003. "Selection of Value-at-Risk models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 337-358.
  27. Neil Shephard & Ole E. Barndorff-Nielsen, 2003. "Power and bipower variation with stochastic volatility and jumps," Economics Series Working Papers 2003-W18, University of Oxford, Department of Economics.
  28. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2006. "Vector Multiplicative Error Models: Representation and Inference," NBER Technical Working Papers 0331, National Bureau of Economic Research, Inc.
  29. Leeb, Hannes & P tscher, Benedikt M., 2006. "Performance Limits For Estimators Of The Risk Or Distribution Of Shrinkage-Type Estimators, And Some General Lower Risk-Bound Results," Econometric Theory, Cambridge University Press, vol. 22(01), pages 69-97, February.
  30. Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2006. "Quantile Forecasts of Daily Exchange Rate Returns from Forecasts of Realized Volatility," The Warwick Economics Research Paper Series (TWERPS) 777, University of Warwick, Department of Economics.
  31. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  32. Chou, Ray Yeutien, 2005. "Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 561-82, June.
  33. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
  34. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  35. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
  36. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
  37. White, Halbert, 2006. "Approximate Nonlinear Forecasting Methods," Handbook of Economic Forecasting, Elsevier.
  38. Markku Lanne, 2006. "A Mixture Multiplicative Error Model for Realized Volatility," Economics Working Papers ECO2006/3, European University Institute.
  39. Heiko Ebens, 1999. "Realized Stock Volatility," Economics Working Paper Archive 420, The Johns Hopkins University,Department of Economics, revised Jul 1999.
  40. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 1-37.
  41. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
  42. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  43. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
  44. Jeff Fleming, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, 02.
  45. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
  46. Renault, E. & Werker, B.J.M., 2004. "Stochatic Volatility Models with Transaction Time Risk," Discussion Paper 2004-24, Tilburg University, Center for Economic Research.
  47. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
  48. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  49. Pong, Shiuyan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2004. "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2541-2563, October.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:8:y:2010:i:1:p:29-56. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.