Advanced Search
MyIDEAS: Login to save this article or follow this journal

Realized Volatility: A Review

Contents:

Author Info

  • Michael McAleer
  • Marcelo Medeiros

Abstract

This article reviews the exciting and rapidly expanding literature on realized volatility. After presenting a general univariate framework for estimating realized volatilities, a simple discrete time model is presented in order to motivate the main results. A continuous time specification provides the theoretical foundation for the main results in this literature. Cases with and without microstructure noise are considered, and it is shown how microstructure noise can cause severe problems in terms of consistent estimation of the daily realized volatility. Independent and dependent noise processes are examined. The most important methods for providing consistent estimators are presented, and a critical exposition of different techniques is given. The finite sample properties are discussed in comparison with their asymptotic properties. A multivariate model is presented to discuss estimation of the realized covariances. Various issues relating to modelling and forecasting realized volatilities are considered. The main empirical findings using univariate and multivariate methods are summarized.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930701853509
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Taylor & Francis Journals in its journal Econometric Reviews.

Volume (Year): 27 (2008)
Issue (Month): 1-3 ()
Pages: 10-45

as in new window
Handle: RePEc:taf:emetrv:v:27:y:2008:i:1-3:p:10-45

Contact details of provider:
Web page: http://www.tandfonline.com/LECR20

Order Information:
Web: http://www.tandfonline.com/pricing/journal/LECR20

Related research

Keywords: Continuous time processes; Finance; Financial econometrics; Forecasting; High frequency data; Quadratic variation; Realized volatility; Risk; Trading rules;

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Donald W.K. Andrews, 1988. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Cowles Foundation Discussion Papers 877R, Cowles Foundation for Research in Economics, Yale University, revised Jul 1989.
  2. Michael McAller & Marcelo C. Medeiros, 2007. "A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries," Textos para discussão 544, Department of Economics PUC-Rio (Brazil).
  3. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2005. "Correcting the Errors: Volatility Forecast Evaluation Using High-Frequency Data and Realized Volatilities," Econometrica, Econometric Society, vol. 73(1), pages 279-296, 01.
  4. Scharth, Marcel & Medeiros, Marcelo C., 2009. "Asymmetric effects and long memory in the volatility of Dow Jones stocks," International Journal of Forecasting, Elsevier, vol. 25(2), pages 304-327.
  5. Jeremy Large, 2005. "Estimating quadratic variation when quoted prices jump by a constant increment," Economics Papers 2005-W05, Economics Group, Nuffield College, University of Oxford.
  6. Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
  7. Andrew W. Lo & A. Craig MacKinlay, 1991. "An Econometric Analysis of Nonsynchronous Trading," NBER Working Papers 2960, National Bureau of Economic Research, Inc.
  8. Per Aslak Mykland & Lan Zhang, 2006. "ANOVA for diffusions and It\^{o} processes," Papers math/0611274, arXiv.org.
  9. Biais, Bruno & Glosten, Larry & Spatt, Chester, 2005. "Market microstructure: A survey of microfoundations, empirical results, and policy implications," Journal of Financial Markets, Elsevier, vol. 8(2), pages 217-264, May.
  10. Valeri Voev & Asger Lunde, 2007. "Integrated Covariance Estimation using High-frequency Data in the Presence of Noise," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(1), pages 68-104.
  11. Scholes, Myron & Williams, Joseph, 1977. "Estimating betas from nonsynchronous data," Journal of Financial Economics, Elsevier, vol. 5(3), pages 309-327, December.
  12. Amihud, Yakov & Mendelson, Haim, 1987. " Trading Mechanisms and Stock Returns: An Empirical Investigation," Journal of Finance, American Finance Association, vol. 42(3), pages 533-53, July.
  13. Ole E. Barndorff-Nielsen & Neil Shephard, 2000. "Econometric analysis of realised volatility and its use in estimating stochastic volatility models," Economics Papers 2001-W4, Economics Group, Nuffield College, University of Oxford, revised 05 Jul 2001.
  14. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2004. "Analytical Evaluation Of Volatility Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(4), pages 1079-1110, November.
  15. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  16. Meddahi, N., 2001. "A Theoretical Comparison Between Integrated and Realized Volatilies," Cahiers de recherche 2001-26, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  17. McKensie, C.R. & McAleer, M., 1990. "On Efficient Estimation and Correct Inference in Models with Generated Regressions: A General Approach," Papers 211, Australian National University - Department of Economics.
  18. Martens, Martin & van Dijk, Dick, 2007. "Measuring volatility with the realized range," Journal of Econometrics, Elsevier, vol. 138(1), pages 181-207, May.
  19. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  20. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
  21. Harris, Lawrence, 1990. "Estimation of Stock Price Variances and Serial Covariances from Discrete Observations," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(03), pages 291-306, September.
  22. Michiel de Pooter & Martin Martens & Dick van Dijk, 2005. "Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data - But Which Frequency to Use?," Tinbergen Institute Discussion Papers 05-089/4, Tinbergen Institute, revised 03 Jan 2006.
  23. Gregory H. Bauer & Keith Vorkink, 2007. "Multivariate Realized Stock Market Volatility," Working Papers 07-20, Bank of Canada.
  24. Francis X. Diebold & Atsushi Inoue, 2000. "Long Memory and Regime Switching," NBER Technical Working Papers 0264, National Bureau of Economic Research, Inc.
  25. Pagan, Adrian, 1986. "Two Stage and Related Estimators and Their Applications," Review of Economic Studies, Wiley Blackwell, vol. 53(4), pages 517-38, August.
  26. Fleming, Jeff & Kirby, Chris & Ostdiek, Barbara, 2003. "The economic value of volatility timing using "realized" volatility," Journal of Financial Economics, Elsevier, vol. 67(3), pages 473-509, March.
  27. Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2003. "A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High Frequency Data," NBER Working Papers 10111, National Bureau of Economic Research, Inc.
  28. Toshiya Hoshikawa & Keiji Nagai & Taro Kanatani & Yoshihiko Nishiyama, 2008. "Nonparametric Estimation Methods of Integrated Multivariate Volatilities," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 112-138.
  29. Andersen, Torben G. & Bollerslev, Tim & Lange, Steve, 1999. "Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 457-477, December.
  30. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
  31. M. Angeles Carnero, 2004. "Persistence and Kurtosis in GARCH and Stochastic Volatility Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(2), pages 319-342.
  32. Bollen, Bernard & Inder, Brett, 2002. "Estimating daily volatility in financial markets utilizing intraday data," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 551-562, December.
  33. Roel Oomen, 2004. "Properties of Bias Corrected Realized Variance Under Alternative Sampling Schemes," Working Papers wp04-15, Warwick Business School, Finance Group.
  34. Robert C. Merton, 1980. "On Estimating the Expected Return on the Market: An Exploratory Investigation," NBER Working Papers 0444, National Bureau of Economic Research, Inc.
  35. Cohen, Kalman J. & Hawawini, Gabriel A. & Maier, Steven F. & Schwartz, Robert A. & Whitcomb, David K., 1983. "Friction in the trading process and the estimation of systematic risk," Journal of Financial Economics, Elsevier, vol. 12(2), pages 263-278, August.
  36. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-47, August.
  37. Deo, Rohit & Hurvich, Clifford & Lu, Yi, 2006. "Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 29-58.
  38. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
  39. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
  40. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  41. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
  42. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
  43. Jeff Fleming, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, 02.
  44. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(01), pages 232-261, February.
  45. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
  46. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
  47. Madhavan, Ananth, 2000. "Market microstructure: A survey," Journal of Financial Markets, Elsevier, vol. 3(3), pages 205-258, August.
  48. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
  49. Martens, Martin, 2001. "Forecasting daily exchange rate volatility using intraday returns," Journal of International Money and Finance, Elsevier, vol. 20(1), pages 1-23, February.
  50. Peter Hansen & Jeremy Large & Asger Lunde, 2008. "Moving Average-Based Estimators of Integrated Variance," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 79-111.
  51. Oomen, Roel C.A., 2006. "Properties of Realized Variance Under Alternative Sampling Schemes," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 219-237, April.
  52. Medeiros, Marcelo C. & Veiga, Alvaro, 2009. "Modeling Multiple Regimes In Financial Volatility With A Flexible Coefficient Garch(1,1) Model," Econometric Theory, Cambridge University Press, vol. 25(01), pages 117-161, February.
  53. Martin Martens & Dick van Dijk & Michiel de Pooter, 2004. "Modeling and Forecasting S&P 500 Volatility: Long Memory, Structural Breaks and Nonlinearity," Tinbergen Institute Discussion Papers 04-067/4, Tinbergen Institute.
  54. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
  55. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  56. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  57. MArcelo Carvalho & MArco Aurelio Freire & Marcelo Cunha Medeiros & Leonardo Souza, 2006. "Modeling and forecasting the volatility of Brazilian asset returns," Textos para discussão 530, Department of Economics PUC-Rio (Brazil).
  58. Barucci, Emilio & Reno, Roberto, 2002. "On measuring volatility of diffusion processes with high frequency data," Economics Letters, Elsevier, vol. 74(3), pages 371-378, February.
  59. Barucci, Emilio & Reno, Roberto, 2002. "On measuring volatility and the GARCH forecasting performance," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 12(3), pages 183-200, July.
  60. Harris, Lawrence, 1991. "Stock Price Clustering and Discreteness," Review of Financial Studies, Society for Financial Studies, vol. 4(3), pages 389-415.
  61. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
  62. Maria Elvira Mancino & Paul Malliavin, 2002. "Fourier series method for measurement of multivariate volatilities," Finance and Stochastics, Springer, vol. 6(1), pages 49-61.
  63. Pagan, Adrian, 1984. "Econometric Issues in the Analysis of Regressions with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(1), pages 221-47, February.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:27:y:2008:i:1-3:p:10-45. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.