Advanced Search
MyIDEAS: Login

A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries

Contents:

Author Info

  • Michael McAller

    (School of Economics and Commerce, University of Western Australia)

  • Marcelo C. Medeiros

    ()
    (Department of Economics, PUC-Rio)

Abstract

In this paper we propose a flexible model to capture nonlinearities and long-range dependence in time series dynamics. The new model is a multiple regime smooth transition extension of the Heterogenous Autoregressive (HAR) model, which is specifically designed to model the behavior of the volatility inherent in financial time series. The model is able to describe simultaneously long memory, as well as sign and size asymmetries. A sequence of tests is developed to determine the number of regimes, and an estimation and testing procedure is presented. Monte Carlo simulations evaluate the finite-sample properties of the proposed tests and estimation procedures. We apply the model to several Dow Jones Industrial Average index stocks using transaction level data from the Trades and Quotes database that covers ten years of data. We find strong support for long memory and both sign and size asymmetries. Furthermore, the new model, when combined with the linear HAR model, is viable and flexible for purposes of forecasting volatility.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.econ.puc-rio.br/pdf/td544.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Department of Economics PUC-Rio (Brazil) in its series Textos para discussão with number 544.

as in new window
Length: 38p
Date of creation: Apr 2007
Date of revision:
Handle: RePEc:rio:texdis:544

Contact details of provider:
Postal: Rua Marquês de São Vicente, 225, 22453-900 Rio de Janeiro, RJ
Phone: 021 35271078
Fax: 021 35271084
Web page: http://www.econ.puc-rio.br
More information through EDIRC

Related research

Keywords: Realized volatility; smooth transition; heterogeneous autoregression; financial econometrics; leverage; sign and size asymmetries; forecasting; risk management; model combination.;

Other versions of this item:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-68, July.
  2. Rech, Gianluigi & Teräsvirta, Timo & Tschernig, Rolf, 1999. "A simple variable selection technique for nonlinear models," SFB 373 Discussion Papers 1999,26, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  3. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," CREATES Research Papers 2007-18, School of Economics and Management, University of Aarhus.
  4. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
  5. Jean-Yves Pitarakis, 2004. "Model Selection Uncertainty and Detection of Threshold Effecs," Econometrics 0409013, EconWPA.
  6. Nunzio Cappuccio & Diego Lubian & Davide Raggi, 2006. "Investigating asymmetry in US stock market indexes: evidence from a stochastic volatility model," Applied Financial Economics, Taylor & Francis Journals, vol. 16(6), pages 479-490.
  7. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, November.
  8. Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2003. "A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High Frequency Data," NBER Working Papers 10111, National Bureau of Economic Research, Inc.
  9. Eitrheim, Oyvind & Terasvirta, Timo, 1996. "Testing the adequacy of smooth transition autoregressive models," Journal of Econometrics, Elsevier, vol. 74(1), pages 59-75, September.
  10. Liudas Giraitis, 2004. "LARCH, Leverage, and Long Memory," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(2), pages 177-210.
  11. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  12. Cai, Jun, 1994. "A Markov Model of Switching-Regime ARCH," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 309-16, July.
  13. Marcelo C. Medeiros & Alvaro Veiga, 2003. "Diagnostic Checking in a Flexible Nonlinear Time Series Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(4), pages 461-482, 07.
  14. Davidson, James & Sibbertsen, Philipp, 2002. "Generating schemes for long memory processes: Regimes, aggregation and linearity," Technical Reports 2002,46, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  15. Timo Teräsvirta & Marcelo C. Medeiros & Gianluigi Rech, 2006. "Building neural network models for time series: a statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 49-75.
  16. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-47, August.
  17. Yacine Ait-Sahalia & Per A. Mykland & Lan Zhang, 2005. "Ultra High Frequency Volatility Estimation with Dependent Microstructure Noise," NBER Working Papers 11380, National Bureau of Economic Research, Inc.
  18. Meddahi, N., 2001. "A Theoretical Comparison Between Integrated and Realized Volatilies," Cahiers de recherche 2001-26, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  19. Rabemananjara, R & Zakoian, J M, 1993. "Threshold Arch Models and Asymmetries in Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(1), pages 31-49, Jan.-Marc.
  20. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(02), pages 280-310, April.
  21. Blume, Marshall E & Goldstein, Michael A, 1997. " Quotes, Order Flow, and Price Discovery," Journal of Finance, American Finance Association, vol. 52(1), pages 221-44, March.
  22. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
  23. Mayte Suarez Farinãs & Carlos Eduardo Pedreira & Marcelo C. Medeiros, 2003. "Local-global neural networks: a new approach for nonlinear time series modelling," Textos para discussão 470, Department of Economics PUC-Rio (Brazil).
  24. William N. Goetzmann & Roger G. Ibbotson & Liang Peng, 2000. "A New Historical Database For The NYSE 1815 To 1925: Performance And Predictability," Yale School of Management Working Papers ysm154, Yale School of Management.
  25. Manabu Asai & Michael McAleer, 2007. "Non-trading day effects in asymmetric conditional and stochastic volatility models," Econometrics Journal, Royal Economic Society, vol. 10(1), pages 113-123, 03.
  26. Bai, Jushan, 1998. "A Note On Spurious Break," Econometric Theory, Cambridge University Press, vol. 14(05), pages 663-669, October.
  27. González-Rivera Gloria, 1998. "Smooth-Transition GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(2), pages 1-20, July.
  28. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
  29. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  30. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  31. So, Mike K P & Li, W K & Lam, K, 2002. "A Threshold Stochastic Volatility Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(7), pages 473-500, November.
  32. Ole E. Barndorff-Nielsen & Neil Shephard, 2000. "Econometric analysis of realised volatility and its use in estimating stochastic volatility models," Economics Papers 2001-W4, Economics Group, Nuffield College, University of Oxford, revised 05 Jul 2001.
  33. Fornari, Fabio & Mele, Antonio, 1997. "Sign- and Volatility-Switching ARCH Models: Theory and Applications to International Stock Markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(1), pages 49-65, Jan.-Feb..
  34. Lundbergh, Stefan & Teräsvirta, Timo, 1998. "Evaluating GARCH models," Working Paper Series in Economics and Finance 292, Stockholm School of Economics, revised 03 May 1999.
  35. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
  36. Rohit Deo & Clifford Hurvich & Yi Lu, 2005. "Forecasting Realized Volatility Using a Long Memory Stochastic Volatility Model: Estimation, Prediction and Seasonal Adjustment," Econometrics 0501002, EconWPA.
  37. Michael McAleer & Marcelo Cunha Medeiros, 2006. "Realized volatility: a review," Textos para discussão 531 Publication status: F, Department of Economics PUC-Rio (Brazil).
  38. Massimiliano Caporin & Michael McAleer, 2006. "Dynamic Asymmetric GARCH," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(3), pages 385-412.
  39. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
  40. Manabu Asai & Michael McAleer, 2005. "Asymmetric Multivariate Stochastic Volatility," DEA Working Papers 12, Universitat de les Illes Balears, Departament d'Economía Aplicada.
  41. Madhavan, Ananth, 2000. "Market microstructure: A survey," Journal of Financial Markets, Elsevier, vol. 3(3), pages 205-258, August.
  42. Biais, Bruno & Glosten, Larry & Spatt, Chester, 2004. "Market Microstructure: A Survey of Microfoundations, Empirical Results, and Policy Implications," IDEI Working Papers 253, Institut d'Économie Industrielle (IDEI), Toulouse.
  43. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
  44. Malmsten, Hans & Teräsvirta, Timo, 2004. "Stylized Facts of Financial Time Series and Three Popular Models of Volatility," Working Paper Series in Economics and Finance 563, Stockholm School of Economics, revised 03 Sep 2004.
  45. Clifford M. Hurvich & Bonnie K. Ray, 2003. "The Local Whittle Estimator of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(3), pages 445-470.
  46. Esfandiar Maasoumi & Michael McAleer, 2006. "Multivariate Stochastic Volatility: An Overview," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 139-144.
  47. Schwert, G.W., 1989. "Stock Volatility And The Crash Of '87," Papers 89-01, Rochester, Business - General.
  48. van Dijk, Dick & Franses, Philip Hans & Paap, Richard, 2002. "A nonlinear long memory model, with an application to US unemployment," Journal of Econometrics, Elsevier, vol. 110(2), pages 135-165, October.
  49. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
  50. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  51. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-34, April.
  52. repec:wop:humbsf:1999-26 is not listed on IDEAS
  53. Offer Lieberman & Peter Phillips, 2008. "Refined Inference on Long Memory in Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 254-267.
  54. B. LeBaron, 2001. "Stochastic volatility as a simple generator of apparent financial power laws and long memory," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 621-631.
  55. Mark J. Jensen, 2004. "Semiparametric Bayesian Inference of Long-Memory Stochastic Volatility Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(6), pages 895-922, November.
  56. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
  57. Wooldridge, Jeffrey M., 1990. "A Unified Approach to Robust, Regression-Based Specification Tests," Econometric Theory, Cambridge University Press, vol. 6(01), pages 17-43, March.
  58. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  59. Hasbrouck, Joel, 1995. " One Security, Many Markets: Determining the Contributions to Price Discovery," Journal of Finance, American Finance Association, vol. 50(4), pages 1175-99, September.
  60. Shiqing Ling & Michael McAleer, 2001. "Necessary and Sufficient Moment Conditions for the GARCH(r,s) and Asymmetric Power GARCH(r,s) Models," ISER Discussion Paper 0534, Institute of Social and Economic Research, Osaka University.
  61. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
  62. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-34, October.
  63. Martin Martens & Dick van Dijk & Michiel de Pooter, 2004. "Modeling and Forecasting S&P 500 Volatility: Long Memory, Structural Breaks and Nonlinearity," Tinbergen Institute Discussion Papers 04-067/4, Tinbergen Institute.
  64. Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
  65. M. Angeles Carnero, 2004. "Persistence and Kurtosis in GARCH and Stochastic Volatility Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(2), pages 319-342.
  66. White, Halbert & Domowitz, Ian, 1984. "Nonlinear Regression with Dependent Observations," Econometrica, Econometric Society, vol. 52(1), pages 143-61, January.
  67. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
  68. Smith, Aaron D., 2004. "Level Shifts and the Illusion of Long Memory in Economic Time Series," Working Papers 11974, University of California, Davis, Department of Agricultural and Resource Economics.
  69. So, Mike K P & Lam, K & Li, W K, 1998. "A Stochastic Volatility Model with Markov Switching," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 244-53, April.
  70. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(01), pages 232-261, February.
  71. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
  72. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
  73. Manabu Asai & Michael McAleer, 2005. "Dynamic Asymmetric Leverage in Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 24(3), pages 317-332.
  74. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  75. Nunes, Luis C. & Kuan, Chung-Ming & Newbold, Paul, 1995. "Spurious Break," Econometric Theory, Cambridge University Press, vol. 11(04), pages 736-749, August.
  76. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
  77. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  78. Peter Hansen & Jeremy Large & Asger Lunde, 2008. "Moving Average-Based Estimators of Integrated Variance," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 79-111.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:rio:texdis:544. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.