Advanced Search
MyIDEAS: Login

Automated Inference And Learning In Modeling Financial Volatility


Author Info

  • McAleer, Michael


This paper uses the specific-to-general methodological approach that is widely used in science, in which problems with existing theories are resolved as the need arises, to illustrate a number of important developments in the modeling of univariate and multivariate financial volatility. Some of the difficulties in analyzing time-varying univariate and multivariate conditional volatility and stochastic volatility include the number of parameters to be estimated and the computational complexities associated with multivariate conditional volatility models and both univariate and multivariate stochastic volatility models. For these reasons, among others, automated inference in its present state requires modifications and extensions for modeling in empirical financial econometrics. As a contribution to the development of automated inference in modeling volatility, 20 important issues in the specification, estimation, and testing of conditional and stochastic volatility models are discussed. A potential for automation rating (PAR) index and recommendations regarding the possibilities for automated inference in modeling financial volatility are given in each case.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL:
File Function: link to article abstract page
Download Restriction: no

Bibliographic Info

Article provided by Cambridge University Press in its journal Econometric Theory.

Volume (Year): 21 (2005)
Issue (Month): 01 (February)
Pages: 232-261

as in new window
Handle: RePEc:cup:etheor:v:21:y:2005:i:01:p:232-261_05

Contact details of provider:
Postal: The Edinburgh Building, Shaftesbury Road, Cambridge CB2 2RU UK
Fax: +44 (0)1223 325150
Web page:

Related research



No references listed on IDEAS
You can help add them by filling out this form.


Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.


This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


Access and download statistics


When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:21:y:2005:i:01:p:232-261_05. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.