IDEAS home Printed from https://ideas.repec.org/a/oup/ajagec/v100y2018i1p239-263..html
   My bibliography  Save this article

The Role of El Niño Southern Oscillation in Commodity Price Movement and Predictability

Author

Listed:
  • David Ubilava

Abstract

El Niño Southern Oscillation (ENSO) impacts the supply of and, to some extent, the demand for primary commodities. But what are the consequences of ENSO shocks for these commodity price dynamics? I consider monthly series of 43 primary commodity prices and sea surface temperature (SST) anomalies in the Niño3.4 region from January 1980 to December 2016. The SST anomalies serve as a proxy for ENSO, as persistent positive (negative) SST deviations from their historical mean are associated with El Niño (La Niña) events. I apply a time-varying smooth transition autoregressive modeling framework to account for potentially complex dynamic relationships between SST anomalies and prices. The estimated models reveal more amplified price responses during El Niño events, and at the onset of the ENSO cycle. I find statistically significant linkages between SST anomalies and a subset of agricultural commodity prices, which manifests in a better price forecasting for the commodities produced in the tropics. While I also find some in-sample evidence for prices of selected nonagricultural commodities, for example, timber and metals, the ability of SST anomalies to predict these commodity prices in an out-of-sample setting is lacking. These findings carry important welfare implications, especially for developing economies that have been historically linked to the behavior of primary commodity prices, and offer valuable insights to policy makers working in areas related to economic growth and foreign aid programs, as well as those concerned with issues of farm income and rural poverty.

Suggested Citation

  • David Ubilava, 2018. "The Role of El Niño Southern Oscillation in Commodity Price Movement and Predictability," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(1), pages 239-263.
  • Handle: RePEc:oup:ajagec:v:100:y:2018:i:1:p:239-263.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ajae/aax060
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Toshichika Iizumi & Jing-Jia Luo & Andrew J. Challinor & Gen Sakurai & Masayuki Yokozawa & Hirofumi Sakuma & Molly E. Brown & Toshio Yamagata, 2014. "Impacts of El Niño Southern Oscillation on the global yields of major crops," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    2. K. S. Chan & H. Tong, 1986. "On Estimating Thresholds In Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(3), pages 179-190, May.
    3. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 119-136, Suppl. De.
    4. Balagtas, Joseph Valdes & Holt, Matthew T., 2008. "AJAE Appendix: The Commodity Terms of Trade, Unit Roots, and Nonlinear Alternatives," American Journal of Agricultural Economics APPENDICES, Agricultural and Applied Economics Association, vol. 91(1), pages 1-21, April.
    5. Eitrheim, Oyvind & Terasvirta, Timo, 1996. "Testing the adequacy of smooth transition autoregressive models," Journal of Econometrics, Elsevier, vol. 74(1), pages 59-75, September.
    6. Tomek, William G., 2000. "Commodity Prices Revisited," Staff Papers 121146, Cornell University, Department of Applied Economics and Management.
    7. Angus Deaton, 1999. "Commodity Prices and Growth in Africa," Journal of Economic Perspectives, American Economic Association, vol. 13(3), pages 23-40, Summer.
    8. Markku Lanne & Henri Nyberg, 2016. "Generalized Forecast Error Variance Decomposition for Linear and Nonlinear Multivariate Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(4), pages 595-603, August.
    9. Lundbergh, Stefan & Terasvirta, Timo & van Dijk, Dick, 2003. "Time-Varying Smooth Transition Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 104-121, January.
    10. Paul Cashin & Hong Liang & C. John McDermott, 2000. "How Persistent Are Shocks to World Commodity Prices?," IMF Staff Papers, Palgrave Macmillan, vol. 47(2), pages 1-2.
    11. David Ubilava, 2014. "El Niño Southern Oscillation and the fishmeal–soya bean meal price ratio: regime-dependent dynamics revisited," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(4), pages 583-604.
    12. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    13. Pesaran, M. Hashem & Timmermann, Allan, 2004. "How costly is it to ignore breaks when forecasting the direction of a time series?," International Journal of Forecasting, Elsevier, vol. 20(3), pages 411-425.
    14. Menzie D. Chinn & Olivier Coibion, 2014. "The Predictive Content of Commodity Futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(7), pages 607-636, July.
    15. Dijk, Dick van & Franses, Philip Hans, 1999. "Modeling Multiple Regimes in the Business Cycle," Macroeconomic Dynamics, Cambridge University Press, vol. 3(3), pages 311-340, September.
    16. Ubilava, David & holt, Matt, 2013. "El Ni~no southern oscillation and its effects on world vegetable oil prices: assessing asymmetries using smooth transition models," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(2), pages 1-25.
    17. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    18. Cashin, Paul & Mohaddes, Kamiar & Raissi, Mehdi, 2017. "Fair weather or foul? The macroeconomic effects of El Niño," Journal of International Economics, Elsevier, vol. 106(C), pages 37-54.
    19. Ubilava, David & Helmers, C Gustav, 2012. "Forecasting ENSO with a smooth transition autoregressive model," MPRA Paper 36890, University Library of Munich, Germany.
    20. Hall, Anthony D. & Skalin, Joakim & Teräsvirta, Timo, 1998. "A nonlinear time series model of El Niño," SSE/EFI Working Paper Series in Economics and Finance 263, Stockholm School of Economics.
    21. Thanarak Laosuthi & David D. Selover, 2007. "Does El Nino Affect Business Cycles," Eastern Economic Journal, Eastern Economic Association, vol. 33(1), pages 21-42, Winter.
    22. David Ubilava, 2012. "El Niño, La Niña, and world coffee price dynamics," Agricultural Economics, International Association of Agricultural Economists, vol. 43(1), pages 17-26, January.
    23. Harrison B. Hood & Jeffrey H. Dorfman, 2015. "Examining Dynamically Changing Timber Market Linkages," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(5), pages 1451-1463.
    24. Cashin, Paul & McDermott, C. John & Scott, Alasdair, 2002. "Booms and slumps in world commodity prices," Journal of Development Economics, Elsevier, vol. 69(1), pages 277-296, October.
    25. Allan D. Brunner, 2002. "El Niño and World Primary Commodity Prices: Warm Water or Hot Air?," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 176-183, February.
    26. Tomek, William G., 2000. "Commodity Prices Revisited," Agricultural and Resource Economics Review, Cambridge University Press, vol. 29(2), pages 125-137, October.
    27. Joseph V. Balagtas & Matthew T. Holt, 2009. "The Commodity Terms of Trade, Unit Roots, and Nonlinear Alternatives: A Smooth Transition Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(1), pages 87-105.
    28. Atanu Ghoshray, 2013. "Dynamic Persistence of Primary Commodity Prices," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(1), pages 153-164.
    29. Skalin, Joakim & Teräsvirta, Timo, 2002. "Modeling Asymmetries And Moving Equilibria In Unemployment Rates," Macroeconomic Dynamics, Cambridge University Press, vol. 6(2), pages 202-241, April.
    30. Walter Enders & Matthew T. Holt, 2012. "Sharp Breaks or Smooth Shifts? an Investigation of the Evolution of Primary Commodity Prices," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(3), pages 659-673.
    31. Matthew T. Holt & Lee A. Craig, 2006. "Nonlinear Dynamics and Structural Change in the U.S. Hog—Corn Cycle: A Time-Varying STAR Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(1), pages 215-233.
    32. Sarantis, Nicholas, 1999. "Modeling non-linearities in real effective exchange rates," Journal of International Money and Finance, Elsevier, vol. 18(1), pages 27-45, January.
    33. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    34. Craig, Lee A. & Holt, Matthew T., 2008. "Mechanical refrigeration, seasonality, and the hog-corn cycle in the United States: 1870-1940," Explorations in Economic History, Elsevier, vol. 45(1), pages 30-50, January.
    35. Tomek, William G., 2000. "Commodity Prices Revisited," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 29(2), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolas Legrand, 2023. "War in Ukraine: The rational “wait‐and‐see” mode of global food markets," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(2), pages 626-644, June.
    2. María Lucía Martínez Martínez, 2021. "Efectos de precipitaciones en precios de la leche usando modelos con umbrales según la estructura del mercado," Documentos Departamento de Economía 20752, Universidad del Norte.
    3. Brown, Molly E. & Carr, Edward R. & Grace, Kathryn L. & Wiebe, Keith & Funk, Christopher C. & Attavanich, Witsanu & Backlund, Peter & Buja, Lawrence, 2017. "Do markets and trade help or hurt the global food system adapt to climate change?," Food Policy, Elsevier, vol. 68(C), pages 154-159.
    4. Gilles Dufrénot & William Ginn & Marc Pourroy, 2021. "The Effect of ENSO Shocks on Commodity Prices: A Multi-Time Scale Approach," Working Papers halshs-03225070, HAL.
    5. Zhang, Dongna & Dai, Xingyu & Wang, Qunwei & Lau, Chi Keung Marco, 2023. "Impacts of weather conditions on the US commodity markets systemic interdependence across multi-timescales," Energy Economics, Elsevier, vol. 123(C).
    6. Andrea Bastianin & Alessandro Lanza & Matteo Manera, 2018. "Economic impacts of El Niño southern oscillation: evidence from the Colombian coffee market," Agricultural Economics, International Association of Agricultural Economists, vol. 49(5), pages 623-633, September.
    7. Geraldo Costa Junior & Andrea Calef, 2023. "Precipitation events and local corn prices: evidence from Brazil," University of East Anglia School of Economics Working Paper Series 2023-04, School of Economics, University of East Anglia, Norwich, UK..
    8. Arellano Gonzalez Jesus & Juárez-Torres Miriam & Zazueta Borboa Francisco, 2023. "Temperature shocks and their effect on the price of agricultural products: panel data evidence from vegetables in Mexico," Working Papers 2023-02, Banco de México.
    9. Arellano-Gonzalez, Jesus & Juarez-Torres, Miriam & Zazueta-Borboa, Francisco, 2021. "Temperature shocks and local price changes of agricultural products: panel data evidence from Mexico," 2021 Annual Meeting, August 1-3, Austin, Texas 314060, Agricultural and Applied Economics Association.
    10. Salisu, Afees A. & Gupta, Rangan & Nel, Jacobus & Bouri, Elie, 2022. "The (Asymmetric) effect of El Niño and La Niña on gold and silver prices in a GVAR model," Resources Policy, Elsevier, vol. 78(C).
    11. Yasuhiro Iwanaga & Ryuta Sakemoto, 2023. "Commodity momentum decomposition," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(2), pages 198-216, February.
    12. Arellano Gonzalez Jesus & Juárez-Torres Miriam & Zazueta Borboa Francisco, 2023. "Weather Shocks, Prices and Productivity: Evidence from Staples in Mexico," Working Papers 2023-16, Banco de México.
    13. Elie Bouri & Rangan Gupta & Luca Rossini, 2022. "The Role of the Monthly ENSO in Forecasting the Daily Baltic Dry Index," Working Papers 202229, University of Pretoria, Department of Economics.
    14. Matteo Bonato & Oğuzhan Çepni & Rangan Gupta & Christian Pierdzioch, 2023. "El Niño, La Niña, and forecastability of the realized variance of agricultural commodity prices: Evidence from a machine learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 785-801, July.
    15. David Ubilava, 2022. "A comparison of multistep commodity price forecasts using direct and iterated smooth transition autoregressive methods," Agricultural Economics, International Association of Agricultural Economists, vol. 53(5), pages 687-701, September.
    16. Amadu, Festus O. & Miller, Daniel C. & McNamara, Paul E., 2020. "Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture investments: Evidence from southern Malawi," Ecological Economics, Elsevier, vol. 167(C).
    17. Amadu, Festus O. & McNamara, Paul E. & Miller, Daniel C., 2020. "Yield effects of climate-smart agriculture aid investment in southern Malawi," Food Policy, Elsevier, vol. 92(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ubilava, David, 2017. "The ENSO Effect and Asymmetries in Wheat Price Dynamics," World Development, Elsevier, vol. 96(C), pages 490-502.
    2. David Ubilava, 2014. "El Niño Southern Oscillation and the fishmeal–soya bean meal price ratio: regime-dependent dynamics revisited," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(4), pages 583-604.
    3. David Ubilava, 2012. "Modeling Nonlinearities in the U.S. Soybean‐to‐Corn Price Ratio: A Smooth Transition Autoregression Approach," Agribusiness, John Wiley & Sons, Ltd., vol. 28(1), pages 29-41, January.
    4. Ubilava, David, 2013. "El Niño Southern Oscillation and Primary Agricultural Commodity Prices: Causal Inferences from Smooth Transition Models," 2013 Conference (57th), February 5-8, 2013, Sydney, Australia 152202, Australian Agricultural and Resource Economics Society.
    5. Joseph V. Balagtas & Matthew T. Holt, 2009. "The Commodity Terms of Trade, Unit Roots, and Nonlinear Alternatives: A Smooth Transition Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(1), pages 87-105.
    6. Smith, Sarah C. & Ubilava, David, 2017. "The El Niño Southern Oscillation and Economic Growth in the Developing World," Working Papers 2017-11, University of Sydney, School of Economics, revised May 2017.
    7. Ubilava, David & holt, Matt, 2013. "El Ni~no southern oscillation and its effects on world vegetable oil prices: assessing asymmetries using smooth transition models," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(2), pages 1-25.
    8. Goodwin, Barry K. & Holt, Matthew T. & Prestemon, Jeffrey P., 2019. "Nonlinear exchange rate pass-through in timber products: The case of oriented strand board in Canada and the United States," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    9. Zhu, Yichen & Ghoshray, Atanu, 2021. "Climate Anomalies and Its Impact on U.S. Corn and Soybean Prices," 2021 Conference, August 17-31, 2021, Virtual 315271, International Association of Agricultural Economists.
    10. Davinson Stev Abril‐Salcedo & Luis Fernando Melo‐Velandia & Daniel Parra‐Amado, 2020. "Nonlinear relationship between the weather phenomenon El niño and Colombian food prices," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(4), pages 1059-1086, October.
    11. Emilio Zanetti Chini, 2013. "Generalizing smooth transition autoregressions," CREATES Research Papers 2013-32, Department of Economics and Business Economics, Aarhus University.
    12. Hasanov, Mübariz & Araç, Aysen & Telatar, Funda, 2010. "Nonlinearity and structural stability in the Phillips curve: Evidence from Turkey," Economic Modelling, Elsevier, vol. 27(5), pages 1103-1115, September.
    13. Emediegwu, Lotanna Ernest, 2023. "Assessing the (a)symmetric effect of global climate anomalies on food prices: Evidence from local prices," 97th Annual Conference, March 27-29, 2023, Warwick University, Coventry, UK 334555, Agricultural Economics Society - AES.
    14. Manuel Landajo & Mar'ia Jos'e Presno, 2024. "The prices of renewable commodities: A robust stationarity analysis," Papers 2402.01005, arXiv.org.
    15. Ubilava, David & Helmers, C Gustav, 2012. "Forecasting ENSO with a smooth transition autoregressive model," MPRA Paper 36890, University Library of Munich, Germany.
    16. Winkelried, Diego, 2021. "Unit roots in real primary commodity prices? A meta-analysis of the Grilli and Yang data set," Journal of Commodity Markets, Elsevier, vol. 23(C).
    17. Daniel Parra-Amado & Davinson Stev Abril-Salcedo & Luis Fernando Melo-Velandia, 2016. "Impactos de los fenómenos climáticos sobre el precio de los alimentos en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 34(80), pages 146-158, June.
    18. Davinson Stev Abril Salcedo & Luis Fernando Melo Velandia & Daniel Parra Amado, 2015. "Impactos de los fenómenos climáticos sobre el precio de los alimentos en Colombia," Borradores de Economia 13648, Banco de la Republica.
    19. Sandberg, Rickard, 2016. "Trends, unit roots, structural changes, and time-varying asymmetries in U.S. macroeconomic data: the Stock and Watson data re-examined," Economic Modelling, Elsevier, vol. 52(PB), pages 699-713.
    20. Byrne, Joseph P. & Fazio, Giorgio & Fiess, Norbert, 2013. "Primary commodity prices: Co-movements, common factors and fundamentals," Journal of Development Economics, Elsevier, vol. 101(C), pages 16-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ajagec:v:100:y:2018:i:1:p:239-263.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.