IDEAS home Printed from https://ideas.repec.org/p/ags/aesc23/334555.html
   My bibliography  Save this paper

Assessing the (a)symmetric effect of global climate anomalies on food prices: Evidence from local prices

Author

Listed:
  • Emediegwu, Lotanna Ernest

Abstract

This paper uses time-vary ing smooth transition autoregressive (TV-STAR) model to investigate the asymmetric nature of ENSO (an exogenous climatic factor) with respect to the non-linear dynamics of food prices in sub-Saharan Africa (SSA). Curating food price series from more than 1100 markets from 36 SSA countries, the study finds that ENSO (linearly or nonlinearly) affects roughly half of food prices considered, with most nonlinear models exhibiting strong asymmetric properties with shock-inflicted persistence. Moreover, in terms of the location of the burden of ENSO impact, I find a geographical and food product divide. Specifically, ENSO appears to be more efficacious on maize prices in Southern, Eastern and some parts of Central Africa, while the effect is subdued in the Western African subregion. On the other hand, imported rice and processed foods such as bread appear to be the most affected, while local rice, cassava, millet and animal products like meat and milk are least affected. The policy implication of this dichotomy is that response to ENSO news should be subregion-specific rather than region-specific depending on how the subregions absorb the shock.

Suggested Citation

  • Emediegwu, Lotanna Ernest, 2023. "Assessing the (a)symmetric effect of global climate anomalies on food prices: Evidence from local prices," 97th Annual Conference, March 27-29, 2023, Warwick University, Coventry, UK 334555, Agricultural Economics Society - AES.
  • Handle: RePEc:ags:aesc23:334555
    DOI: 10.22004/ag.econ.334555
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/334555/files/AES2023_GlobalClimateAnomalies.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.334555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    2. Angus Deaton & Guy Laroque, 1992. "On the Behaviour of Commodity Prices," Review of Economic Studies, Oxford University Press, vol. 59(1), pages 1-23.
    3. Joachim von Braun, 2008. "Rising Food Prices: What Should Be Done?," EuroChoices, The Agricultural Economics Society, vol. 7(SpecialIs), pages 30-35, August.
    4. Andrea Bastianin & Alessandro Lanza & Matteo Manera, 2018. "Economic impacts of El Niño southern oscillation: evidence from the Colombian coffee market," Agricultural Economics, International Association of Agricultural Economists, vol. 49(5), pages 623-633, September.
    5. Zhang, Zibin & Lohr, Luanne & Escalante, Cesar & Wetzstein, Michael, 2010. "Food versus fuel: What do prices tell us?," Energy Policy, Elsevier, vol. 38(1), pages 445-451, January.
    6. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    7. Lundbergh, Stefan & Terasvirta, Timo & van Dijk, Dick, 2003. "Time-Varying Smooth Transition Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 104-121, January.
    8. Allan D. Brunner, 2002. "El Niño and World Primary Commodity Prices: Warm Water or Hot Air?," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 176-183, February.
    9. Ajanovic, Amela, 2011. "Biofuels versus food production: Does biofuels production increase food prices?," Energy, Elsevier, vol. 36(4), pages 2070-2076.
    10. Joseph Kargbo, 2000. "Impacts of monetary and macroeconomic factors on food prices in eastern and southern Africa," Applied Economics, Taylor & Francis Journals, vol. 32(11), pages 1373-1389.
    11. Derek Headey & Shenggen Fan, 2008. "Anatomy of a crisis: the causes and consequences of surging food prices," Agricultural Economics, International Association of Agricultural Economists, vol. 39(s1), pages 375-391, November.
    12. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 119-136, Suppl. De.
    13. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    14. Burke, M. & Craxton, M. & Kolstad, C.D. & Onda, C. & Allcott, H. & Baker, E. & Barrage, L. & Carson, R. & Gillingham, K. & Graff-Zivin, J. & Greenstone, M. & Hallegatte, S. & Hanemann, W.M. & Heal, G., 2016. "Opportunities for advances in climate change economics," ISU General Staff Papers 3565, Iowa State University, Department of Economics.
    15. Burke, M & Craxton, M & Kolstad, CD & Onda, C & Allcott, H & Baker, E & Barrage, L & Carson, R & Gillingham, K & Graf-Zivin, J & Greenstone, M & Hallegatte, S & Hanemann, WM & Heal, G & Hsiang, S & Jo, 2016. "Opportunities for advances in climate change economics," University of California at Santa Barbara, Recent Works in Economics qt4tc5d9pb, Department of Economics, UC Santa Barbara.
    16. Cashin, Paul & Mohaddes, Kamiar & Raissi, Mehdi, 2017. "Fair weather or foul? The macroeconomic effects of El Niño," Journal of International Economics, Elsevier, vol. 106(C), pages 37-54.
    17. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    18. Christopher Gilbert & Wyn Morgan, 2010. "Has food price volatility risen?," Department of Economics Working Papers 1002, Department of Economics, University of Trento, Italia.
    19. Deaton, Angus & Laroque, Guy, 1996. "Competitive Storage and Commodity Price Dynamics," Journal of Political Economy, University of Chicago Press, vol. 104(5), pages 896-923, October.
    20. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    21. Letson, David & McCullough, B.D., 2001. "ENSO and Soybean Prices: Correlation without Causality," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 33(3), pages 513-521, December.
    22. Solomon M. Hsiang, 2016. "Climate Econometrics," NBER Working Papers 22181, National Bureau of Economic Research, Inc.
    23. Philip Abbott & Adeline Borot de Battisti, 2011. "Recent Global Food Price Shocks: Causes, Consequences and Lessons for African Governments and Donors-super- †," Journal of African Economies, Centre for the Study of African Economies, vol. 20(suppl_1), pages -62, May.
    24. Joseph V. Balagtas & Matthew T. Holt, 2009. "The Commodity Terms of Trade, Unit Roots, and Nonlinear Alternatives: A Smooth Transition Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(1), pages 87-105.
    25. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    26. Elodie Blanc & John Reilly, 2017. "Approaches to Assessing Climate Change Impacts on Agriculture: An Overview of the Debate," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 247-257.
    27. Millner, Antony & McDermott, Thomas K. J., 2016. "Model confirmation in climate economics," LSE Research Online Documents on Economics 67122, London School of Economics and Political Science, LSE Library.
    28. Mariaflavia Harari & Eliana La Ferrara, 2018. "Conflict, Climate, and Cells: A Disaggregated Analysis," The Review of Economics and Statistics, MIT Press, vol. 100(4), pages 594-608, October.
    29. Fowowe, Babajide, 2016. "Do oil prices drive agricultural commodity prices? Evidence from South Africa," Energy, Elsevier, vol. 104(C), pages 149-157.
    30. Solomon M. Hsiang & Kyle C. Meng & Mark A. Cane, 2011. "Civil conflicts are associated with the global climate," Nature, Nature, vol. 476(7361), pages 438-441, August.
    31. Wooldridge, Jeffrey M., 1990. "A Unified Approach to Robust, Regression-Based Specification Tests," Econometric Theory, Cambridge University Press, vol. 6(1), pages 17-43, March.
    32. Solomon Hsiang, 2016. "Climate Econometrics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 43-75, October.
    33. Samuel Bazzi & Christopher Blattman, 2014. "Economic Shocks and Conflict: Evidence from Commodity Prices," American Economic Journal: Macroeconomics, American Economic Association, vol. 6(4), pages 1-38, October.
    34. Angus Deaton, 1999. "Commodity Prices and Growth in Africa," Journal of Economic Perspectives, American Economic Association, vol. 13(3), pages 23-40, Summer.
    35. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emediegwu, Lotanna E. & Ubabukoh, Chisom L., 2023. "Re-examining the impact of annual weather fluctuations on global livestock production," Ecological Economics, Elsevier, vol. 204(PA).
    2. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    3. van Weezel, Stijn, 2020. "Local warming and violent armed conflict in Africa," World Development, Elsevier, vol. 126(C).
    4. Davinson Stev Abril‐Salcedo & Luis Fernando Melo‐Velandia & Daniel Parra‐Amado, 2020. "Nonlinear relationship between the weather phenomenon El niño and Colombian food prices," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(4), pages 1059-1086, October.
    5. Kahn, Matthew E. & Mohaddes, Kamiar & Ng, Ryan N.C. & Pesaran, M. Hashem & Raissi, Mehdi & Yang, Jui-Chung, 2021. "Long-term macroeconomic effects of climate change: A cross-country analysis," Energy Economics, Elsevier, vol. 104(C).
    6. David Ubilava, 2018. "The Role of El Niño Southern Oscillation in Commodity Price Movement and Predictability," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(1), pages 239-263.
    7. Federica Cappelli & Caterina Conigliani & Davide Consoli & Valeria Costantini & Elena Paglialunga, 2023. "Climate change and armed conflicts in Africa: temporal persistence, non-linear climate impact and geographical spillovers," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 40(2), pages 517-560, July.
    8. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    9. Albuquerque Sant'Anna, André, 2018. "Not So Natural: Unequal Effects of Public Policies on the Occurrence of Disasters," Ecological Economics, Elsevier, vol. 152(C), pages 273-281.
    10. Pretis, Felix, 2020. "Econometric modelling of climate systems: The equivalence of energy balance models and cointegrated vector autoregressions," Journal of Econometrics, Elsevier, vol. 214(1), pages 256-273.
    11. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    12. Ubilava, David, 2017. "The ENSO Effect and Asymmetries in Wheat Price Dynamics," World Development, Elsevier, vol. 96(C), pages 490-502.
    13. Richard S.J. Tol, 2020. "The Economic Impact of Weather and Climate," Video Library 2094, Department of Economics, University of Sussex Business School.
    14. Desbureaux, Sébastien & Rodella, Aude-Sophie, 2019. "Drought in the city: The economic impact of water scarcity in Latin American metropolitan areas," World Development, Elsevier, vol. 114(C), pages 13-27.
    15. Newell, Richard G. & Prest, Brian C. & Sexton, Steven E., 2021. "The GDP-Temperature relationship: Implications for climate change damages," Journal of Environmental Economics and Management, Elsevier, vol. 108(C).
    16. Taraz, Vis, 2018. "Can farmers adapt to higher temperatures? Evidence from India," World Development, Elsevier, vol. 112(C), pages 205-219.
    17. André Tashi Gasser & Bruno Lanz, 2023. "Climate change, temperature extremes, and conflict: Evidence from mainland Southeast Asia," IRENE Working Papers 23-05, IRENE Institute of Economic Research.
    18. Chaitat Jirophat & Pym Manopimoke & Suparit Suwanik, 2022. "The Macroeconomic Effects of Climate Shocks in Thailand," PIER Discussion Papers 188, Puey Ungphakorn Institute for Economic Research.
    19. Linsenmeier, Manuel, 2021. "Seasonal temperature variability and economic cycles," LSE Research Online Documents on Economics 115526, London School of Economics and Political Science, LSE Library.
    20. Santeramo, Fabio Gaetano & Bozzola, Martina & Lamonaca, Emilia, 2020. "Impacts of Climate Change on Global Agri-Food Trade," 2019: Recent Advances in Applied General Equilibrium Modeling: Relevance and Application to Agricultural Trade Analysis, December 8-10, 2019, Washington, DC 339375, International Agricultural Trade Research Consortium.

    More about this item

    Keywords

    Demand and Price Analysis; Research Methods/ Statistical Methods;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aesc23:334555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aesukea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.