Advanced Search
MyIDEAS: Login to save this paper or follow this series

Forecasting ENSO with a smooth transition autoregressive model

Contents:

Author Info

  • Ubilava, David
  • Helmers, C Gustav

Abstract

This study examines the benets of nonlinear time series modelling to improve forecast accuracy of the El Nino Southern Oscillation (ENSO) phenomenon. The paper adopts a smooth transition autoregressive (STAR) modelling framework to assess the potentially regime-dependent dynamics of sea surface temperature anomaly. The results reveal STAR-type nonlinearities in ENSO dynamics, resulting in superior out-of-sample forecast performance of STAR over the linear autoregressive models. The advantage of nonlinear models is especially apparent in the short- and intermediate-term forecasts. These results are of interest to researchers and policy makers in the elds of climate dynamics, agricultural production, and environmental management.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/36890/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 36890.

as in new window
Length:
Date of creation: Jan 2012
Date of revision:
Handle: RePEc:pra:mprapa:36890

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: El Nino Southern Oscillation; Out-of-Sample Forecasting; Smooth Transition Autoregression;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  2. Eitrheim, Oyvind & Terasvirta, Timo, 1996. "Testing the adequacy of smooth transition autoregressive models," Journal of Econometrics, Elsevier, Elsevier, vol. 74(1), pages 59-75, September.
  3. Swanson, Norman R., 1998. "Money and output viewed through a rolling window," Journal of Monetary Economics, Elsevier, Elsevier, vol. 41(3), pages 455-474, May.
  4. Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
  5. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, Elsevier, vol. 13(2), pages 281-291, June.
  6. Milas, Costas & Rothman, Philip, 2008. "Out-of-sample forecasting of unemployment rates with pooled STVECM forecasts," International Journal of Forecasting, Elsevier, Elsevier, vol. 24(1), pages 101-121.
  7. David Ubilava, 2012. "El Niño, La Niña, and world coffee price dynamics," Agricultural Economics, International Association of Agricultural Economists, vol. 43(1), pages 17-26, 01.
  8. Teräsvirta, Timo & van Dijk, Dick & Medeiros, Marcelo, 2004. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," Working Paper Series in Economics and Finance 561, Stockholm School of Economics, revised 04 Nov 2004.
  9. Chung-Ming Kuan, 2006. "Artificial Neural Networks," IEAS Working Paper : academic research 06-A010, Institute of Economics, Academia Sinica, Taipei, Taiwan.
  10. Allan D. Brunner, 2002. "El Niño and World Primary Commodity Prices: Warm Water or Hot Air?," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 176-183, February.
  11. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, Econometric Society, vol. 57(2), pages 357-84, March.
  12. Robert B. Davies, 2002. "Hypothesis testing when a nuisance parameter is present only under the alternative: Linear model case," Biometrika, Biometrika Trust, Biometrika Trust, vol. 89(2), pages 484-489, June.
  13. Hall, Anthony D. & Skalin, Joakim & Teräsvirta, Timo, 1998. "A nonlinear time series model of El Niño," Working Paper Series in Economics and Finance 263, Stockholm School of Economics.
  14. Sarantis, Nicholas, 1999. "Modeling non-linearities in real effective exchange rates," Journal of International Money and Finance, Elsevier, Elsevier, vol. 18(1), pages 27-45, January.
  15. Skalin, Joakim & Ter svirta, Timo, 2002. "Modeling Asymmetries And Moving Equilibria In Unemployment Rates," Macroeconomic Dynamics, Cambridge University Press, Cambridge University Press, vol. 6(02), pages 202-241, April.
  16. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., John Wiley & Sons, Ltd., vol. 7(S), pages S119-36, Suppl. De.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Ubilava, David, 2013. "El Niño Southern Oscillation and Primary Agricultural Commodity Prices: Causal Inferences from Smooth Transition Models," 2013 Conference (57th), February 5-8, 2013, Sydney, Australia, Australian Agricultural and Resource Economics Society 152202, Australian Agricultural and Resource Economics Society.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:36890. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.