Advanced Search
MyIDEAS: Login to save this book chapter or follow this series

Forecasting economic variables with nonlinear models


Author Info

  • Terasvirta, Timo


The topic of this chapter is forecasting with nonlinear models. First, a number of well-known nonlinear models are introduced and their properties discussed. These include the smooth transition regression model, the switching regression model whose univariate counterpart is called threshold autoregressive model, the Markov-switching or hidden Markov regression model, the artificial neural network model, and a couple of other models. Many of these nonlinear models nest a linear model. For this reason, it is advisable to test linearity before estimating the nonlinear model one thinks will fit the data. A number of linearity tests are discussed. These form a part of model specification: the remaining steps of nonlinear model building are parameter estimation and evaluation that are also briefly considered. There are two possibilities of generating forecasts from nonlinear models. Sometimes it is possible to use analytical formulas as in linear models. In many other cases, however, forecasts more than one periods ahead have to be generated numerically. Methods for doing that are presented and compared. The accuracy of point forecasts can be compared using various criteria and statistical tests. Some of these tests have the property that they are not applicable when one of the two models under comparison nests the other one. Tests that have been developed in order to work in this situation are described. The chapter also contains a simulation study showing how, in some situations, forecasts from a correctly specified nonlinear model may be inferior to ones from a certain linear model. There exist relatively large studies in which the forecasting performance of nonlinear models is compared with that of linear models using actual macroeconomic series. Main features of some such studies are briefly presented and lessons from them described. In general, no dominant nonlinear (or linear) model has emerged.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

as in new window

This chapter was published in:

  • G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1, January.
    This item is provided by Elsevier in its series Handbook of Economic Forecasting with number 1-08.

    Handle: RePEc:eee:ecofch:1-08

    Contact details of provider:
    Web page:

    Related research


    Other versions of this item:

    Find related papers by JEL classification:


    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Swanson, N.R. & White, H., 1995. "A Models Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks," Papers 04-95-12, Pennsylvania State - Department of Economics.
    2. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    3. Massimiliano Marcellino & James Stock & Mark Watson, 2005. "A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series," Working Papers 285, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    4. Venetis, Ioannis A. & Paya, Ivan & Peel, David A., 2003. "Re-examination of the predictability of economic activity using the yield spread: a nonlinear approach," International Review of Economics & Finance, Elsevier, vol. 12(2), pages 187-206.
    5. Eitrheim, Oyvind & Terasvirta, Timo, 1996. "Testing the adequacy of smooth transition autoregressive models," Journal of Econometrics, Elsevier, vol. 74(1), pages 59-75, September.
    6. Ramsey James B., 1996. "If Nonlinear Models Cannot Forecast, What Use Are They?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 1(2), pages 1-24, July.
    7. René Garcia, 1995. "Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models," CIRANO Working Papers 95s-07, CIRANO.
    8. Marcellino, Massimiliano, 2002. "Forecasting EMU Macroeconomic Variables," CEPR Discussion Papers 3529, C.E.P.R. Discussion Papers.
    9. Hamilton, James D., 1996. "Specification testing in Markov-switching time-series models," Journal of Econometrics, Elsevier, vol. 70(1), pages 127-157, January.
    10. Timo Teräsvirta & Ann-Charlotte Eliasson, 2001. "Non-linear error correction and the UK demand for broad money, 1878-1993," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 277-288.
    11. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    12. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-30, March.
    13. Enders, Walter & Granger, Clive W J, 1998. "Unit-Root Tests and Asymmetric Adjustment with an Example Using the Term Structure of Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 304-11, July.
    14. Boero, Gianna & Marrocu, Emanuela, 2002. "The Performance of Non-linear Exchange Rate Models: A Forecasting Comparison," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(7), pages 513-42, November.
    15. Bierens, H.J., 1989. "A consistent conditional moment test of functional form," Serie Research Memoranda 0064, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    16. Perron, P. & Bai, J., 1995. "Estimating and Testing Linear Models with Multiple Structural Changes," Cahiers de recherche 9552, Universite de Montreal, Departement de sciences economiques.
    17. Pfann, Gerard A. & Schotman, Peter C. & Tschernig, Rolf, 1996. "Nonlinear interest rate dynamics and implications for the term structure," Journal of Econometrics, Elsevier, vol. 74(1), pages 149-176, September.
    18. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895, December.
    19. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    20. Giacomini, Raffaella & White, Halbert, 2003. "Tests of Conditional Predictive Ability," University of California at San Diego, Economics Working Paper Series qt5jk0j5jh, Department of Economics, UC San Diego.
    21. Zacharias Psaradakis & Fabio Spagnolo, 2005. "Forecast performance of nonlinear error-correction models with multiple regimes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(2), pages 119-138.
    22. Lutz Kilian & Mark P. Taylor, 2001. "Why Is It So Difficult to Beat the Random Walk Forecast of Exchange Rates?," Working Papers 464, Research Seminar in International Economics, University of Michigan.
    23. David Hendry & Michael P. Clements, 2001. "Economic Forecasting: Some Lessons from Recent Research," Economics Papers 2002-W11, Economics Group, Nuffield College, University of Oxford.
    24. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
    25. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    26. Corradi, Valentina & Swanson, Norman R., 2002. "A consistent test for nonlinear out of sample predictive accuracy," Journal of Econometrics, Elsevier, vol. 110(2), pages 353-381, October.
    27. Timmermann, Allan G, 2005. "Forecast Combinations," CEPR Discussion Papers 5361, C.E.P.R. Discussion Papers.
    28. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, Elsevier.
    29. De Gooijer, Jan G. & Vidiella-i-Anguera, Antoni, 2004. "Forecasting threshold cointegrated systems," International Journal of Forecasting, Elsevier, vol. 20(2), pages 237-253.
    30. BAI, Jushan & PERRON, Pierre, 1998. "Computation and Analysis of Multiple Structural-Change Models," Cahiers de recherche 9807, Universite de Montreal, Departement de sciences economiques.
    31. Deutsch, Melinda & Granger, Clive W. J. & Terasvirta, Timo, 1994. "The combination of forecasts using changing weights," International Journal of Forecasting, Elsevier, vol. 10(1), pages 47-57, June.
    32. Inoue, Atsushi & Kilian, Lutz, 2002. "In-sample or out-of-sample tests of predictability: which one should we use?," Working Paper Series 0195, European Central Bank.
    33. Hansen, Bruce E, 1999. " Testing for Linearity," Journal of Economic Surveys, Wiley Blackwell, vol. 13(5), pages 551-76, December.
    34. Brown, Bryan W & Mariano, Roberto S, 1984. "Residual-Based Procedures for Prediction and Estimation in a Nonlinear Simultaneous System," Econometrica, Econometric Society, vol. 52(2), pages 321-43, March.
    35. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    36. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-75, July.
    37. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    38. Bradley, Michael D. & Jansen, Dennis W., 2004. "Forecasting with a nonlinear dynamic model of stock returns and industrial production," International Journal of Forecasting, Elsevier, vol. 20(2), pages 321-342.
    39. Robert Breunig & Serinah Najarian & Adrian Pagan, 2003. "Specification Testing of Markov Switching Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 703-725, December.
    40. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    41. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    42. Skalin, Joakim & Teräsvirta, Timo, 1998. "Modelling asymmetries and moving equilibria in unemployment rates," Working Paper Series in Economics and Finance 262, Stockholm School of Economics, revised 05 Oct 1998.
    43. De Gooijer, Jan G. & De Bruin, Paul T., 1998. "On forecasting SETAR processes," Statistics & Probability Letters, Elsevier, vol. 37(1), pages 7-14, January.
    44. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
    45. Lin, Chien-Fu & Teräsvirta, Timo, 1995. "Testing Parameter Constancy in Linear Models against Stochastic Stationary Parameters," Working Paper Series in Economics and Finance 54, Stockholm School of Economics.
    46. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    47. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    48. Valentina Corradi & Norman Swanson, 2004. "Predictive Density Evaluation," Departmental Working Papers 200419, Rutgers University, Department of Economics.
    49. Granger, Clive W.J. & Machina, Mark J., 2006. "Forecasting and Decision Theory," Handbook of Economic Forecasting, Elsevier.
    50. Harvey, Andrew, 2006. "Forecasting with Unobserved Components Time Series Models," Handbook of Economic Forecasting, Elsevier.
    51. Michael P. Clements & Hans-Martin Krolzig, 1998. "A comparison of the forecast performance of Markov-switching and threshold autoregressive models of US GNP," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages C47-C75.
    52. Strikholm, Birgit & Teräsvirta, Timo, 2005. "Determining the Number of Regimes in a Threshold Autoregressive Model Using Smooth Transition Autoregressions," Working Paper Series in Economics and Finance 578, Stockholm School of Economics, revised 11 Feb 2005.
    53. Proietti, Tommaso, 2003. "Forecasting the US unemployment rate," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 451-476, March.
    54. Massimiliano Marcellino, . "Instability and non-linearity in the EMU," Working Papers 211, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    55. Henry, Olan T & Olekalns, Nilss & Summers, Peter M, 2001. "Exchange Rate Instability: A Threshold Autoregressive Approach," The Economic Record, The Economic Society of Australia, vol. 77(237), pages 160-66, June.
    56. Gonzalo, Jesus & Pitarakis, Jean-Yves, 2002. "Estimation and model selection based inference in single and multiple threshold models," Journal of Econometrics, Elsevier, vol. 110(2), pages 319-352, October.
    57. Valentina Corradi & Norman Swanson, 2006. "Predictive Density Evaluation. Revised," Departmental Working Papers 200621, Rutgers University, Department of Economics.
    58. White, Halbert, 2006. "Approximate Nonlinear Forecasting Methods," Handbook of Economic Forecasting, Elsevier.
    59. repec:sae:niesru:v:167:y::i:1:p:106-112 is not listed on IDEAS
    60. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages S119-36, Suppl. De.
    61. Robert B. Davies, 2002. "Hypothesis testing when a nuisance parameter is present only under the alternative: Linear model case," Biometrika, Biometrika Trust, vol. 89(2), pages 484-489, June.
    62. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
    63. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Öğünç, Fethi & Akdoğan, Kurmaş & Başer, Selen & Chadwick, Meltem Gülenay & Ertuğ, Dilara & Hülagü, Timur & Kösem, Sevim & Özmen, Mustafa Utku & Tekatlı, Necati, 2013. "Short-term inflation forecasting models for Turkey and a forecast combination analysis," Economic Modelling, Elsevier, vol. 33(C), pages 312-325.
    2. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
    3. González, Andrés & Hubrich, Kirstin & Teräsvirta, Timo, 2011. "Forecasting inflation with gradual regime shifts and exogenous information," Working Paper Series 1363, European Central Bank.
    4. Giancarlo Bruno, 2008. "Forecasting Using Functional Coefficients Autoregressive Models," ISAE Working Papers 98, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
    5. Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
    6. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    7. Anders Bredahl Kock & Timo Teräsvirta, 2010. "Forecasting with nonlinear time series models," CREATES Research Papers 2010-01, School of Economics and Management, University of Aarhus.
    8. Ana Beatriz Galv�o, 2007. "Changes in Predictive Ability with Mixed Frequency Data," Working Papers 595, Queen Mary, University of London, School of Economics and Finance.
    9. Acatrinei, Marius Cristian & Caraiani, Petre, 2011. "Modeling and Forecasting the Dynamics in Romanian Stock Market Indices Using Threshold Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 42-54, June.
    10. Milena Hoyos & Mario Galindo, 2011. "Comparación De Los Modelos Setar Y Star Para El Índice De Empleo Industrial Colombiano," DOCUMENTOS DE TRABAJO - ESCUELA DE ECONOMÍA 008347, UN - RCE - CID.
    11. Landajo, Manuel & Presno, María José, 2010. "Nonparametric pseudo-Lagrange multiplier stationarity testing," MPRA Paper 25659, University Library of Munich, Germany.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:ecofch:1-08. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.