Advanced Search
MyIDEAS: Login

Forecasting industrial production with linear, nonlinear, and structural change models

Contents:

Author Info

  • Siliverstovs, B.
  • van Dijk, D.J.C.

Abstract

We compare the forecasting performance of linear autoregressive models, autoregressive models with structural breaks, self-exciting threshold autoregressive models, and Markov switching autoregressive models in terms of point, interval, and density forecasts for h-month growth rates of industrial production of the G7 countries, for the period January 1960-December 2000. The results of point forecast evaluation tests support the established notion in the forecasting literature on the favorable performance of the linear AR model. By contrast, the Markov switching models render more accurate interval and density forecasts than the other models, including the linear AR model. This encouraging finding supports the idea that non-linear models may outperform linear competitors in terms of describing the uncertainty around future realizations of a time series.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://repub.eur.nl/pub/1716/feweco20030514165056.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute in its series Econometric Institute Research Papers with number EI 2003-16.

as in new window
Length:
Date of creation: 14 May 2003
Date of revision:
Handle: RePEc:ems:eureir:1716

Contact details of provider:
Postal: Postbus 1738, 3000 DR Rotterdam
Phone: 31 10 4081111
Web page: http://www.eur.nl/ese
More information through EDIRC

Related research

Keywords: density forecasts; forecast evaluation tests; interval forecasts; nonlinearity; structural change;

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Boero, Gianna & Marrocu, Emanuela, 2002. "The Performance of Non-linear Exchange Rate Models: A Forecasting Comparison," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(7), pages 513-42, November.
  2. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
  3. Massimiliano Marcellino, . "Instability and non-linearity in the EMU," Working Papers 211, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  4. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-74, October.
  5. Koop, Gary & Potter, Simon M, 1999. "Dynamic Asymmetries in U.S. Unemployment," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 298-312, July.
  6. James H. Stock & Mark W. Watson, 1994. "Evidence on structural instability in macroeconomic times series relations," Working Paper Series, Macroeconomic Issues 94-13, Federal Reserve Bank of Chicago.
  7. Massimiliano Marcellino, . "Forecasting EMU macroeconomic variables," Working Papers 216, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  8. Clements, Michael P. & Smith, Jeremy, 2001. "Evaluating forecasts from SETAR models of exchange rates," Journal of International Money and Finance, Elsevier, vol. 20(1), pages 133-148, February.
  9. David Harvey & Paul Newbold, 2000. "Tests for multiple forecast encompassing," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 471-482.
  10. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-59, April.
  11. Perron, P. & Bai, J., 1995. "Estimating and Testing Linear Models with Multiple Structural Changes," Cahiers de recherche 9552, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  12. Michael P. Clements & Hans-Martin Krolzig, 1998. "A comparison of the forecast performance of Markov-switching and threshold autoregressive models of US GNP," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages C47-C75.
  13. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  14. Wallis, Kenneth F., 2003. "Chi-squared tests of interval and density forecasts, and the Bank of England's fan charts," International Journal of Forecasting, Elsevier, vol. 19(2), pages 165-175.
  15. Simpson, Paul W & Osborn, Denise R & Sensier, Marianne, 2001. "Forecasting UK Industrial Production over the Business Cycle," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(6), pages 405-24, September.
  16. Clements, M.P. & Franses, Ph.H.B.F. & Smith, J., 1999. "On SETAR non- linearity and forecasting," Econometric Institute Research Papers EI 9914-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  17. van Dijk, D.J.C. & Terasvirta, T. & Franses, Ph.H.B.F., 2000. "Smooth transition autoregressive models - A survey of recent developments," Econometric Institute Research Papers EI 2000-23/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  18. David H. Papell & Christian J. Murray & Hala Ghiblawi, 2000. "The Structure of Unemployment," The Review of Economics and Statistics, MIT Press, vol. 82(2), pages 309-315, May.
  19. De Gooijer, Jan G. & Kumar, Kuldeep, 1992. "Some recent developments in non-linear time series modelling, testing, and forecasting," International Journal of Forecasting, Elsevier, vol. 8(2), pages 135-156, October.
  20. Bai, Jushan & Lumsdaine, Robin L & Stock, James H, 1998. "Testing for and Dating Common Breaks in Multivariate Time Series," Review of Economic Studies, Wiley Blackwell, vol. 65(3), pages 395-432, July.
  21. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2012. "The Out-of-Sample Forecasting Performance of Non-Linear Models of Regional Housing Prices in the US," Working papers 2012-12, University of Connecticut, Department of Economics.
  2. Goodness C. Aye & Mehmet Balcilar & Adél Bosch & Rangan Gupta & Francois Stofberg, 2013. "The out-of-sample forecasting performance of non-linear models of real exchange rate behaviour: The case of the South African Rand," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 10(1), pages 121-148, April.
  3. Teräsvirta, Timo & van Dijk, Dick & Medeiros, Marcelo, 2004. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," Working Paper Series in Economics and Finance 561, Stockholm School of Economics, revised 04 Nov 2004.
  4. Rapach, David E. & Wohar, Mark E., 2006. "The out-of-sample forecasting performance of nonlinear models of real exchange rate behavior," International Journal of Forecasting, Elsevier, vol. 22(2), pages 341-361.
  5. Houda Ben Hadj Boubaker, 2011. "The Forecasting Performance of Seasonal and Nonlinear Models," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 1(1), pages 26-39, March.
  6. Bruno, Giancarlo, 2009. "Non-linear relation between industrial production and business surveys data," MPRA Paper 42337, University Library of Munich, Germany.
  7. Manzan, Sebastiano & Zerom, Dawit, 2008. "A bootstrap-based non-parametric forecast density," International Journal of Forecasting, Elsevier, vol. 24(3), pages 535-550.
  8. Maurício Yoshinori Une & Marcelo Savino Portugal, 2005. "Can fear beat hope? A story of GARCH-in-Mean-Level effects for Emerging Market Country Risks," Econometrics 0509006, EconWPA.
  9. Manzan, S. & Zerom, D., 2005. "A Multi-Step Forecast Density," CeNDEF Working Papers 05-05, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1716. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePub).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.