Advanced Search
MyIDEAS: Login to save this article or follow this journal

Building neural network models for time series: a statistical approach

Contents:

Author Info

  • Timo Teräsvirta

    (Department of Economic Statistics, Stockholm School of Economics, Sweden)

  • Marcelo C. Medeiros

    (Department of Economics, Pontifical Catholic University of Rio de Janeiro, Brazil)

  • Gianluigi Rech

    (Department of Economic Statistics, Stockholm School of Economics, Sweden)

Abstract

This paper is concerned with modelling time series by single hidden layer feedforward neural network models. A coherent modelling strategy based on statistical inference is presented. Variable selection is carried out using simple existing techniques. The problem of selecting the number of hidden units is solved by sequentially applying Lagrange multiplier type tests, with the aim of avoiding the estimation of unidentified models. Misspecification tests are derived for evaluating an estimated neural network model. All the tests are entirely based on auxiliary regressions and are easily implemented. A small-sample simulation experiment is carried out to show how the proposed modelling strategy works and how the misspecification tests behave in small samples. Two applications to real time series, one univariate and the other multivariate, are considered as well. Sets of one-step-ahead forecasts are constructed and forecast accuracy is compared with that of other nonlinear models applied to the same series. Copyright © 2006 John Wiley & Sons, Ltd.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1002/for.974
File Function: Link to full text; subscription required
Download Restriction: no

Bibliographic Info

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Forecasting.

Volume (Year): 25 (2006)
Issue (Month): 1 ()
Pages: 49-75

as in new window
Handle: RePEc:jof:jforec:v:25:y:2006:i:1:p:49-75

Contact details of provider:
Web page: http://www3.interscience.wiley.com/cgi-bin/jhome/2966

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:25:y:2006:i:1:p:49-75. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.