Advanced Search
MyIDEAS: Login to save this article or follow this journal

Computer automation of general-to-specific model selection procedures

Contents:

Author Info

  • Krolzig, Hans-Martin
  • Hendry, David F.

Abstract

Over the last three decades, the LSE methodology (see Hendry, 1993, for an overview) has emerged as a leading approach for pursuing econometrics. One of its main tenets is the concept of general-to-specific modelling: Starting from a general dynamic statistical model, which captures the essential characteristics of the underlying data set, standard testing procedures are used to reduce its complexity by eliminating statistically insignificant variables and to check the validity of the reductions in order to ensure the congruency of the model. As the reduction process is inherently iterative, many reduction paths can be considered, which may lead to different terminal specifications. Encompassing is then used to test between these, usually non-nested, specifications, and only models which survive the encompassing step are kept for further consideration. If more than one model survives the "testimation" process, it becomes the new general model, and the specification process is re-applied to it. This paper proposes a computer automation of the general-to-specific model-selection process, which we call PcGets (GEneral-To-Specific). Written in Ox (see Doornik, 1998), it is a package designed for general-to-specific modelling of economic processes. In Monte Carlo experiments, the general-to-specific approach of PcGets recovers the specification of the DGP with a remarkable accuracy. The empirical size and power of the specification found by PcGets are investigated and found to be as one would expect if the DGP were known.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V85-42DX1XK-2/2/0310c413801fe94960a3b086524a4deb
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Economic Dynamics and Control.

Volume (Year): 25 (2001)
Issue (Month): 6-7 (June)
Pages: 831-866

as in new window
Handle: RePEc:eee:dyncon:v:25:y:2001:i:6-7:p:831-866

Contact details of provider:
Web page: http://www.elsevier.com/locate/jedc

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Hendry, David F, 1980. "Econometrics-Alchemy or Science?," Economica, London School of Economics and Political Science, vol. 47(188), pages 387-406, November.
  2. Kevin D. Hoover & Stephen J. Perez, . "Data Mining Reconsidered: Encompassing And The General-To-Specific Approach To Specification Search," Department of Economics 97-27, California Davis - Department of Economics.
  3. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-38, May.
  4. Davidson, James E H, et al, 1978. "Econometric Modelling of the Aggregate Time-Series Relationship between Consumers' Expenditure and Income in the United Kingdom," Economic Journal, Royal Economic Society, vol. 88(352), pages 661-92, December.
  5. David F. Hendry & Neil R. Ericsson, 1989. "An econometric analysis of UK money demand in MONETARY TRENDS IN THE UNITED STATES AND THE UNITED KINGDOM by Milton Friedman and Anna J. Schwartz," International Finance Discussion Papers 355, Board of Governors of the Federal Reserve System (U.S.).
  6. Hendry, David F., 1984. "Monte carlo experimentation in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 16, pages 937-976 Elsevier.
  7. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
  8. Sawa, Takamitsu, 1978. "Information Criteria for Discriminating among Alternative Regression Models," Econometrica, Econometric Society, vol. 46(6), pages 1273-91, November.
  9. Godfrey, Leslie G, 1978. "Testing for Higher Order Serial Correlation in Regression Equations When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1303-10, November.
  10. David F. Hendry & Neil R. Ericsson, 1990. "Modeling the demand for narrow money in the United Kingdom and the United States," International Finance Discussion Papers 383, Board of Governors of the Federal Reserve System (U.S.).
  11. Andrew C. Harvey, 1990. "The Econometric Analysis of Time Series, 2nd Edition," MIT Press Books, The MIT Press, edition 2, volume 1, number 026208189x, December.
  12. Hendry, David F., 1995. "Dynamic Econometrics," OUP Catalogue, Oxford University Press, number 9780198283164, September.
  13. Nicholls, D F & Pagan, A R, 1983. "Heteroscedasticity in Models with Lagged Dependent Variables," Econometrica, Econometric Society, vol. 51(4), pages 1233-42, July.
  14. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-44, January.
  15. Hendry, David F & Doornik, Jurgen A, 1994. "Modelling Linear Dynamic Econometric Systems," Scottish Journal of Political Economy, Scottish Economic Society, vol. 41(1), pages 1-33, February.
  16. David F. Hendry & Hans-Martin Krolzig, 1999. "Improving on 'Data mining reconsidered' by K.D. Hoover and S.J. Perez," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 202-219.
  17. Lovell, Michael C, 1983. "Data Mining," The Review of Economics and Statistics, MIT Press, vol. 65(1), pages 1-12, February.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:25:y:2001:i:6-7:p:831-866. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.