Advanced Search
MyIDEAS: Login

Forecasting the Polish Zloty with Non-Linear Models

Contents:

Author Info

  • Michał Rubaszek

    ()
    (National Bank of Poland)

  • Paweł Skrzypczyński

    ()
    (National Bank of Poland)

  • Grzegorz Koloch

    ()
    (National Bank of Poland)

Abstract

The literature on exchange rate forecasting is vast. Many researchers have tested whether implications of theoretical economic models or the use of advanced econometric techniques can help explain future movements in exchange rates. The results of the empirical studies for major world currencies show that forecasts from a naive random walk tend to be comparable or even better than forecasts from more sophisticated models. In the case of the Polish zloty, the discussion in the literature on exchange rate forecasting is scarce. This article fills this gap by testing whether non-linear time series models are able to generate forecasts for the nominal exchange rate of the Polish zloty that are more accurate than forecasts from a random walk. Our results confirm the main findings from the literature, namely that it is dificult to outperform a naive random walk in exchange rate forecasting contest.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.cejeme.pl/publishedarticles/2011-03-06-634455829983593750-8959.pdf
Download Restriction: no

Bibliographic Info

Article provided by CEJEME in its journal Central European Journal of Economic Modelling and Econometrics.

Volume (Year): 2 (2010)
Issue (Month): 2 (March)
Pages: 151-167

as in new window
Handle: RePEc:psc:journl:v:2:y:2010:i:4:p:151-167

Contact details of provider:
Web page: http://cejeme.org/

Related research

Keywords: exchange rate forecasting; Polish zloty; Markov-switching models; artificial neural networks;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  2. Taylor, Mark P & Peel, David A & Sarno, Lucio, 2001. "Nonlinear Mean-Reversion in Real Exchange Rates: Toward a Solution to the Purchasing Power Parity Puzzles," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(4), pages 1015-42, November.
  3. Jeremy Berkowitz & Lorenzo Giorgianni, 2001. "Long-Horizon Exchange Rate Predictability?," The Review of Economics and Statistics, MIT Press, vol. 83(1), pages 81-91, February.
  4. repec:att:wimass:9220 is not listed on IDEAS
  5. David H. Romer & Christina D. Romer, 2000. "Federal Reserve Information and the Behavior of Interest Rates," American Economic Review, American Economic Association, vol. 90(3), pages 429-457, June.
  6. Lutz Kilian & Mark P. Taylor, 2001. "Why Is It So Difficult to Beat the Random Walk Forecast of Exchange Rates?," Working Papers 464, Research Seminar in International Economics, University of Michigan.
  7. Charles Engel & Kenneth D. West, 2003. "Exchange rates and fundamentals," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
  8. Agustín Maravall & Ana del Río, 2001. "Time Aggregation and the Hodrick-Prescott Filter," Banco de Espa�a Working Papers 0108, Banco de Espa�a.
  9. Chinn, Menzie D. & Meese, Richard A., 1995. "Banking on currency forecasts: How predictable is change in money?," Journal of International Economics, Elsevier, vol. 38(1-2), pages 161-178, February.
  10. Carlo Altavilla & Paul De Grauwe, 2010. "Forecasting and combining competing models of exchange rate determination," Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
  11. Dimitris Kirikos, 2000. "Forecasting exchange rates out of sample: random walk vs Markov switching regimes," Applied Economics Letters, Taylor & Francis Journals, vol. 7(2), pages 133-136.
  12. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages S119-36, Suppl. De.
  13. Charles Engel, 1991. "Can the Markov switching model forecast exchange rates?," Research Working Paper 91-04, Federal Reserve Bank of Kansas City.
  14. Engel, Charles & Hamilton, James D, 1990. "Long Swings in the Dollar: Are They in the Data and Do Markets Know It?," American Economic Review, American Economic Association, vol. 80(4), pages 689-713, September.
  15. Newey, Whitney K & West, Kenneth D, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Wiley Blackwell, vol. 61(4), pages 631-53, October.
  16. Cheung, Yin-Wong & Chinn, Menzie David & Garcia Pascual, Antonio, 2003. "Empirical Exchange Rate Models of the Nineties: Are Any Fit to Survive?," Santa Cruz Department of Economics, Working Paper Series qt12z9x4c5, Department of Economics, UC Santa Cruz.
  17. Michal Rubaszek & Pawel Skrzypczynski & Grzegorz Koloch, 2011. "Forecasting the Polish zloty with non-linear models," National Bank of Poland Working Papers 81, National Bank of Poland, Economic Institute.
  18. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
  19. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  20. Kilian, Lutz, 1999. "Exchange Rates and Monetary Fundamentals: What Do We Learn from Long-Horizon Regressions?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 491-510, Sept.-Oct.
  21. Wolff, Christian C P, 1987. "Time-Varying Parameters and the Out-of-Sample Forecasting Performance of Structural Exchange Rate Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(1), pages 87-97, January.
  22. Frankel, Jeffrey A & Froot, Kenneth A, 1990. "Chartists, Fundamentalists, and Trading in the Foreign Exchange Market," American Economic Review, American Economic Association, vol. 80(2), pages 181-85, May.
  23. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
  24. Mark, Nelson C, 1995. "Exchange Rates and Fundamentals: Evidence on Long-Horizon Predictability," American Economic Review, American Economic Association, vol. 85(1), pages 201-18, March.
  25. Meese, Richard A & Rose, Andrew K, 1990. "Nonlinear, Nonparametric, Nonessential Exchange Rate Estimation," American Economic Review, American Economic Association, vol. 80(2), pages 192-96, May.
  26. Ludwig Kanzler, 1998. "GPH: MATLAB module to calculate Geweke-Porter-Hudak long memory statistic," Statistical Software Components T850805, Boston College Department of Economics.
  27. Jes�s Crespo Cuaresma & Jaroslava Hlouskova, 2005. "Beating the random walk in Central and Eastern Europe," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(3), pages 189-201.
  28. Ardic, Oya Pinar & Ergin, Onur & Senol, G. Bahar, 2008. "Exchange Rate Forecasting: Evidence from the Emerging Central and Eastern European Economies," MPRA Paper 7505, University Library of Munich, Germany.
  29. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Michal Rubaszek & Pawel Skrzypczynski & Grzegorz Koloch, 2011. "Forecasting the Polish zloty with non-linear models," National Bank of Poland Working Papers 81, National Bank of Poland, Economic Institute.
  2. Jakub Muck & Pawel Skrzypczynski, 2012. "Can we beat the random walk in forecasting CEE exchange rates?," National Bank of Poland Working Papers 127, National Bank of Poland, Economic Institute.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:psc:journl:v:2:y:2010:i:4:p:151-167. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Krzysztof Osiewalski).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.