IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login

Citations for "Further Results on Forecasting and Model Selection Under Asymmetric Loss"

by Christoffersen & Diebold

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Rosario Dell'Aquila & Elvezio Ronchetti, 2004. "Stock and Bond Return Predictability : The Discrimination Power of Model Selection Criteria," Research Papers by the Institute of Economics and Econometrics, Geneva School of Economics and Management, University of Geneva 2004.05, Institut d'Economie et Econométrie, Université de Genève.
  2. Demosthenes N Tambakis, 2000. "On The Informational Content Of Asset Prices," Computing in Economics and Finance 2000 101, Society for Computational Economics.
  3. Sean D. Campbell & Francis X. Diebold, 2003. "Weather Forecasting for Weather Derivatives," NBER Working Papers 10141, National Bureau of Economic Research, Inc.
  4. Valentina Corradi & Norman Swanson, 2004. "Bootstrap Procedures for Recursive Estimation Schemes With Applications to Forecast Model Selection," Departmental Working Papers 200418, Rutgers University, Department of Economics.
  5. Francis X. Diebold & Todd A. Gunther & Anthony S. Tay, 1997. "Evaluating density forecasts," Working Papers 97-6, Federal Reserve Bank of Philadelphia.
  6. Allan Timmermann & Andrew Patton, 2004. "Properties of Optimal Forecasts under Asymmetric Loss and Nonlinearity," Working Papers wp04-05, Warwick Business School, Finance Group.
  7. Francis X. Diebold & Lutz Kilian & Marc Nerlove, 2006. "Time Series Analysis," PIER Working Paper Archive 06-019, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    • Diebold, F.X. & Kilian, L. & Nerlove, Marc, 2006. "Time Series Analysis," Working Papers 28556, University of Maryland, Department of Agricultural and Resource Economics.
  8. Goodwin, Paul, 2005. "Providing support for decisions based on time series information under conditions of asymmetric loss," European Journal of Operational Research, Elsevier, vol. 163(2), pages 388-402, June.
  9. Francis X. Diebold & Peter F. Christoffersen, 1997. "Cointegration and Long-Horizon Forecasting," IMF Working Papers 97/61, International Monetary Fund.
  10. Wolfgang Polasek, 2013. "Forecast Evaluations for Multiple Time Series: A Generalized Theil Decomposition," Working Paper Series 23_13, The Rimini Centre for Economic Analysis.
  11. Franses, Ph.H.B.F. & Legerstee, R. & Paap, R., 2011. "Estimating Loss Functions of Experts," Econometric Institute Research Papers EI2011-42, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  12. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
  13. Skouras, Spyros, 2001. "Financial returns and efficiency as seen by an artificial technical analyst," Journal of Economic Dynamics and Control, Elsevier, vol. 25(1-2), pages 213-244, January.
  14. Carlos Capistrán & Allan Timmermann, 2006. "Disagreement and Biases in Inflation Expectations," Working Papers 2006-07, Banco de México.
  15. M A Clatworthy & D Peel & P F Pope, 2005. "Are analysts' loss functions asymmetric?," Working Papers 574124, Lancaster University Management School, Economics Department.
  16. Trapani, Lorenzo & Urga, Giovanni, 2009. "Optimal forecasting with heterogeneous panels: A Monte Carlo study," International Journal of Forecasting, Elsevier, vol. 25(3), pages 567-586, July.
  17. Peter Christoffersen & Francis X. Diebold, 2002. "Financial Asset Returns, Market Timing, and Volatility Dynamics," CIRANO Working Papers 2002s-02, CIRANO.
  18. Ulu, Yasemin, 2007. "Optimal prediction under LINLIN loss: Empirical evidence," International Journal of Forecasting, Elsevier, vol. 23(4), pages 707-715.
  19. Peter F. Christoffersen & Francis X. Diebold, 2003. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," NBER Working Papers 10009, National Bureau of Economic Research, Inc.
  20. Schorfheide, Frank, 2005. "VAR forecasting under misspecification," Journal of Econometrics, Elsevier, vol. 128(1), pages 99-136, September.
  21. María Clara Aristizábal Restrepo, . "Evaluación asimétrica de una red neuronal artificial:Aplicación al caso de la inflación en Colombia," Borradores de Economia 377, Banco de la Republica de Colombia.
  22. Brownlees, Christian T. & Gallo, Giampiero M., 2011. "Shrinkage estimation of semiparametric multiplicative error models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 365-378.
  23. M A Clatworthy & D Peel & P F Pope, 2006. "Are analysts’ loss functions asymmetric?," Working Papers 574591, Lancaster University Management School, Economics Department.
  24. Valentina Corradi & Norman Swanson, 2013. "A Survey of Recent Advances in Forecast Accuracy Comparison Testing, with an Extension to Stochastic Dominance," Departmental Working Papers 201309, Rutgers University, Department of Economics.
  25. Christoffersen & Diebold, . "Optimal Prediction Under Asymmetric Loss," Home Pages 167, 1996., University of Pennsylvania.
  26. Higgins, Matthew L. & Mishra, Sagarika, 2014. "State dependent asymmetric loss and the consensus forecast of real U.S. GDP growth," Economic Modelling, Elsevier, vol. 38(C), pages 627-632.
  27. Corradi, Valentina & Swanson, Norman R. & Olivetti, Claudia, 2001. "Predictive ability with cointegrated variables," Journal of Econometrics, Elsevier, vol. 104(2), pages 315-358, September.
  28. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
  29. Francis X. Diebold & Jose A. Lopez, 1996. "Forecast Evaluation and Combination," NBER Technical Working Papers 0192, National Bureau of Economic Research, Inc.
  30. Alp, Tansel & Demetrescu, Matei, 2010. "Joint forecasts of Dow Jones stocks under general multivariate loss function," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2360-2371, November.
  31. Valentina Corradi & Norman Swanson, 2003. "The Block Bootstrap for Parameter Estimation Error In Recursive Estimation Schemes, With Applications to Predictive Evaluation," Departmental Working Papers 200313, Rutgers University, Department of Economics.
  32. Diebold, Francis X & Kilian, Lutz, 2000. "Measuring Predictability: Theory And Macroeconomic Applications," CEPR Discussion Papers 2424, C.E.P.R. Discussion Papers.
  33. repec:pen:papers:14-011 is not listed on IDEAS
  34. Hashem Pesaran, M., 2003. "Aggregation of linear dynamic models: an application to life-cycle consumption models under habit formation," Economic Modelling, Elsevier, vol. 20(2), pages 383-415, March.
  35. Ulu, Yasemin, 2013. "Multivariate test for forecast rationality under asymmetric loss functions: Recent evidence from MMS survey of inflation–output forecasts," Economics Letters, Elsevier, vol. 119(2), pages 168-171.
  36. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
  37. Granger, C.W.J. & Pesaran, M. H., 1999. "Economic and Statistical Measures of Forecast Accuracy," Cambridge Working Papers in Economics 9910, Faculty of Economics, University of Cambridge.
  38. Corradi, V. & Swanson, N.R., 2000. "A Consistent Test for Nonlinear Out of Sample Predictive Accuracy," Discussion Papers 0012, Exeter University, Department of Economics.
  39. Michael P. Clements & Philip Hans Franses & Norman R. Swanson, 2003. "Forecasting economic and financial time-series with non-linear models," Departmental Working Papers 200309, Rutgers University, Department of Economics.
  40. Pesaran, M. H., 1999. "On Aggregation of Linear Dynamic Models," Cambridge Working Papers in Economics 9919, Faculty of Economics, University of Cambridge.
  41. Marcella Niglio, 2007. "Multi-step forecasts from threshold ARMA models using asymmetric loss functions," Statistical Methods and Applications, Springer, vol. 16(3), pages 395-410, November.
  42. Dell'Aquila, Rosario & Ronchetti, Elvezio, 2006. "Stock and bond return predictability: the discrimination power of model selection criteria," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1478-1495, March.
  43. Demetrescu, Matei, 2006. "An extension of the Gauss-Newton algorithm for estimation under asymmetric loss," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 379-401, January.
  44. Stanislav Anatolyev & Natalia Kryzhanovskaya, 2009. "Directional Prediction of Returns under Asymmetric Loss: Direct and Indirect Approaches," Working Papers w0136, Center for Economic and Financial Research (CEFIR).
  45. E. Mamatzakis, 2014. "Revealing asymmetries in the loss function of WTI oil futures market," Empirical Economics, Springer, vol. 47(2), pages 411-426, September.
  46. Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Mishra, Santosh, 2004. "Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood," International Journal of Forecasting, Elsevier, vol. 20(4), pages 629-645.
  47. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.