My bibliography
Save this item
Statistical and Machine Learning forecasting methods: Concerns and ways forward
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hauzenberger, Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2025.
"Bayesian neural networks for macroeconomic analysis,"
Journal of Econometrics, Elsevier, vol. 249(PC).
- Niko Hauzenberger & Florian Huber & Karin Klieber & Massimiliano Marcellino, 2022. "Bayesian Neural Networks for Macroeconomic Analysis," Papers 2211.04752, arXiv.org, revised Apr 2024.
- Hauzenberger , Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2024. "Bayesian Neural Networks for Macroeconomic Analysis," CEPR Discussion Papers 19381, C.E.P.R. Discussion Papers.
- Smyl, Slawek, 2020. "A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting," International Journal of Forecasting, Elsevier, vol. 36(1), pages 75-85.
- Amin Eshkiti & Fatemeh Sabouhi & Ali Bozorgi-Amiri, 2023. "A data-driven optimization model to response to COVID-19 pandemic: a case study," Annals of Operations Research, Springer, vol. 328(1), pages 337-386, September.
- Simone Sbaraglia & Alessandro Fiori Maccioni & Stefano Zedda, 2024. "Optimizing Energy Storage Profits: A New Metric for Evaluating Price Forecasting Models," JRFM, MDPI, vol. 17(12), pages 1-29, November.
- Montero-Manso, Pablo & Hyndman, Rob J., 2021.
"Principles and algorithms for forecasting groups of time series: Locality and globality,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1632-1653.
- Pablo Montero-Manso & Rob J Hyndman, 2020. "Principles and Algorithms for Forecasting Groups of Time Series: Locality and Globality," Monash Econometrics and Business Statistics Working Papers 45/20, Monash University, Department of Econometrics and Business Statistics.
- Rasaizadi, Arash & Farzin, Iman & Hafizi, Fateme, 2022. "Machine learning approach versus probabilistic approach to model the departure time of non-mandatory trips," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
- Luca Massidda & Marino Marrocu, 2018. "Smart Meter Forecasting from One Minute to One Year Horizons," Energies, MDPI, vol. 11(12), pages 1-16, December.
- Nasios, Ioannis & Vogklis, Konstantinos, 2022. "Blending gradient boosted trees and neural networks for point and probabilistic forecasting of hierarchical time series," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1448-1459.
- Terrén-Serrano, G. & Martínez-Ramón, M., 2023. "Kernel learning for intra-hour solar forecasting with infrared sky images and cloud dynamic feature extraction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
- Salim Jibrin Danbatta & Ahmad Muhammad & Asaf Varol & Daha Tijjani Abdurrahaman, 2025. "Forecasting monthly rainfall using hybrid time-series models and Monte Carlo simulation amidst security challenges: a case study of five districts from northern Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(6), pages 13815-13837, June.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "Predicting/hypothesizing the findings of the M5 competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1337-1345.
- Evangelos Spiliotis & Fotios Petropoulos & Konstantinos Nikolopoulos, 2020. "The Impact of Imperfect Weather Forecasts on Wind Power Forecasting Performance: Evidence from Two Wind Farms in Greece," Energies, MDPI, vol. 13(8), pages 1-18, April.
- Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023.
"Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
- Kin G. Olivares & Cristian Challu & Grzegorz Marcjasz & Rafal Weron & Artur Dubrawski, 2021. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," WORking papers in Management Science (WORMS) WORMS/21/07, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Faisal Khalil & Gordon Pipa, 2022. "Is Deep-Learning and Natural Language Processing Transcending the Financial Forecasting? Investigation Through Lens of News Analytic Process," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 147-171, June.
- Suder, Marcin & Gurgul, Henryk & Barbosa, Belem & Machno, Artur & Lach, Łukasz, 2024. "Effectiveness of ATM withdrawal forecasting methods under different market conditions," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
- Evangelos Spiliotis & Fotios Petropoulos & Vassilios Assimakopoulos, 2023. "On the Disagreement of Forecasting Model Selection Criteria," Forecasting, MDPI, vol. 5(2), pages 1-12, June.
- Rybinski, Krzysztof, 2021. "Ranking professional forecasters by the predictive power of their narratives," International Journal of Forecasting, Elsevier, vol. 37(1), pages 186-204.
- Yang Zhou & Chi Xie & Gang-Jin Wang & Jue Gong & You Zhu, 2025. "Forecasting cryptocurrency volatility: a novel framework based on the evolving multiscale graph neural network," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-52, December.
- de Rezende, Rafael & Egert, Katharina & Marin, Ignacio & Thompson, Guilherme, 2022. "A white-boxed ISSM approach to estimate uncertainty distributions of Walmart sales," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1460-1467.
- Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
- Büttner, Daniel & Scheidler, Anne Antonia & Rabe, Markus, 2021. "A reference model for data-driven sales planning: Development of the model's framework and functionality," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 441-476, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- Nils Hinrichs & Tobias Roeschl & Pia Lanmueller & Felix Balzer & Carsten Eickhoff & Benjamin O’Brien & Volkmar Falk & Alexander Meyer, 2024. "Short-term vital parameter forecasting in the intensive care unit: A benchmark study leveraging data from patients after cardiothoracic surgery," PLOS Digital Health, Public Library of Science, vol. 3(9), pages 1-18, September.
- Marya Butt & Ander de Keijzer, 2022. "Using Transfer Learning to Train a Binary Classifier for Lorrca Ektacytometery Microscopic Images of Sickle Cells and Healthy Red Blood Cells," Data, MDPI, vol. 7(9), pages 1-21, September.
- González Grandón, T. & Schwenzer, J. & Steens, T. & Breuing, J., 2024. "Electricity demand forecasting with hybrid classical statistical and machine learning algorithms: Case study of Ukraine," Applied Energy, Elsevier, vol. 355(C).
- Liu, Chen & Wang, Chao & Tran, Minh-Ngoc & Kohn, Robert, 2025. "A long short-term memory enhanced realized conditional heteroskedasticity model," Economic Modelling, Elsevier, vol. 142(C).
- Alex Coad & Stjepan Srhoj, 2020. "Catching Gazelles with a Lasso: Big data techniques for the prediction of high-growth firms," Small Business Economics, Springer, vol. 55(3), pages 541-565, October.
- Witold Orzeszko, 2021. "Nonlinear Causality between Crude Oil Prices and Exchange Rates: Evidence and Forecasting," Energies, MDPI, vol. 14(19), pages 1-16, September.
- Rajapaksha, Dilini & Bergmeir, Christoph & Hyndman, Rob J., 2023. "LoMEF: A framework to produce local explanations for global model time series forecasts," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1424-1447.
- Syed Ali Jafar Zaidi & Saad Tariq & Samir Brahim Belhaouari, 2021. "Future Prediction of COVID-19 Vaccine Trends Using a Voting Classifier," Data, MDPI, vol. 6(11), pages 1-18, November.
- UÄŸur Åžener & Salvatore Joseph Terregrossa, 2024. "A Transcendental LASSO Function for Combining Machine Learning and Statistical Model Forecasts," SAGE Open, , vol. 14(3), pages 21582440241, August.
- Ivașcu Codruț, 2023. "Can Machine Learning Models Predict Inflation?," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 17(1), pages 1748-1756, July.
- Rafael R. S. Guimaraes, 2022. "Deep Learning Macroeconomics," Papers 2201.13380, arXiv.org.
- Sule Birim & Ipek Kazancoglu & Sachin Kumar Mangla & Aysun Kahraman & Yigit Kazancoglu, 2024. "The derived demand for advertising expenses and implications on sustainability: a comparative study using deep learning and traditional machine learning methods," Annals of Operations Research, Springer, vol. 339(1), pages 131-161, August.
- Rotem Zelingher, 2024. "Democratising Agricultural Commodity Price Forecasting: The AGRICAF Approach," Papers 2410.20363, arXiv.org, revised Mar 2025.
- Apostolos Ampountolas & Mark Legg, 2024. "Predicting daily hotel occupancy: a practical application for independent hotels," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 23(3), pages 197-205, June.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
- Twumasi, Clement & Twumasi, Juliet, 2022. "Machine learning algorithms for forecasting and backcasting blood demand data with missing values and outliers: A study of Tema General Hospital of Ghana," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1258-1277.
- Theo Berger & Jana Koubová, 2024. "Forecasting Bitcoin returns: Econometric time series analysis vs. machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2904-2916, November.
- Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
- Elías, Antonio & Jiménez, Raúl & Shang, Han Lin, 2022. "On projection methods for functional time series forecasting," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Chong, Daniel Jia Sheng & Chan, Yi Jing & Arumugasamy, Senthil Kumar & Yazdi, Sara Kazemi & Lim, Jun Wei, 2023. "Optimisation and performance evaluation of response surface methodology (RSM), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) in the prediction of biogas production ," Energy, Elsevier, vol. 266(C).
- Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021.
"Nowcasting GDP using machine-learning algorithms: A real-time assessment,"
International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2019. "Nowcasting New Zealand GDP using machine learning algorithms," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2018. "Nowcasting New Zealand GDP Using Machine Learning Algorithms," CAMA Working Papers 2018-47, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Ioannis Nasios & Konstantinos Vogklis, 2023. "Blending gradient boosted trees and neural networks for point and probabilistic forecasting of hierarchical time series," Papers 2310.13029, arXiv.org.
- Md Sabbirul Haque & Md Shahedul Amin & Jonayet Miah, 2023. "Retail Demand Forecasting: A Comparative Study for Multivariate Time Series," Papers 2308.11939, arXiv.org.
- Abolghasemi, Mahdi & Abbasi, Babak & HosseiniFard, Zahra, 2025. "Machine learning for satisficing operational decision making: A case study in blood supply chain," International Journal of Forecasting, Elsevier, vol. 41(1), pages 3-19.
- Andrés García-Medina & Ester Aguayo-Moreno, 2024. "LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1511-1542, April.
- Arrieta-Prieto, Mario & Schell, Kristen R., 2022. "Spatio-temporal probabilistic forecasting of wind power for multiple farms: A copula-based hybrid model," International Journal of Forecasting, Elsevier, vol. 38(1), pages 300-320.
- Hakan Pabuccu & Serdar Ongan & Ayse Ongan, 2023. "Forecasting the movements of Bitcoin prices: an application of machine learning algorithms," Papers 2303.04642, arXiv.org.
- Daniela Firoiu & George H. Ionescu & Cerasela Pîrvu & Ramona Pîrvu & Cristian Mihai Cismaș & Melinda Petronela Costin, 2024. "The Road to 2030: Evaluating Europe’s Progress on Sustainable Ecosystem Protection and Restoration," Land, MDPI, vol. 13(12), pages 1-20, November.
- Joel A. Martínez-Regalado & Cinthia Leonora Murillo-Avalos & Purificación Vicente-Galindo & Mónica Jiménez-Hernández & José Luis Vicente-Villardón, 2021. "Using HJ-Biplot and External Logistic Biplot as Machine Learning Methods for Corporate Social Responsibility Practices for Sustainable Development," Mathematics, MDPI, vol. 9(20), pages 1-16, October.
- Jane M. Binner & Logan J. Kelly & Jonathan A. Tepper, 2025. "Professional Forecasters vs. Shallow Neural Network Ensembles: Assessing Inflation Prediction Accuracy," JRFM, MDPI, vol. 18(4), pages 1-16, March.
- Hassani, Hossein & Beneki, Christina & Silva, Emmanuel Sirimal & Vandeput, Nicolas & Madsen, Dag Øivind, 2021. "The science of statistics versus data science: What is the future?," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
- Xie, Yiwei & Hu, Pingfang & Zhu, Na & Lei, Fei & Xing, Lu & Xu, Linghong & Sun, Qiming, 2020. "A hybrid short-term load forecasting model and its application in ground source heat pump with cooling storage system," Renewable Energy, Elsevier, vol. 161(C), pages 1244-1259.
- Pekka Koponen & Jussi Ikäheimo & Juha Koskela & Christina Brester & Harri Niska, 2020. "Assessing and Comparing Short Term Load Forecasting Performance," Energies, MDPI, vol. 13(8), pages 1-17, April.
- Grossman, Irina & Wilson, Tom & Temple, Jeromey, 2023. "Forecasting small area populations with long short-term memory networks," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
- Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
- Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021.
"Nowcasting GDP using machine-learning algorithms: A real-time assessment,"
International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2019. "Nowcasting GDP using machine learning algorithms: A real-time assessment," Reserve Bank of New Zealand Discussion Paper Series DP2019/03, Reserve Bank of New Zealand.
- Henry Ekwaro-Osire & Dennis Bode & Klaus-Dieter Thoben & Jan-Hendrik Ohlendorf, 2022. "Identification of Machine Learning Relevant Energy and Resource Manufacturing Efficiency Levers," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
- Robert Stok & Paul Bilokon, 2023. "From Deep Filtering to Deep Econometrics," Papers 2311.06256, arXiv.org.
- Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
- George H. Ionescu & Daniela Firoiu & Andra-Maria Manda & Ramona Pîrvu & Elena Jianu & Maria-Eliza Antoniu, 2024. "Progress towards the 2030 Sustainable Development Goals for EU Urban Communities (SDG11)," Sustainability, MDPI, vol. 16(11), pages 1-21, May.
- Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
- Chien-Chih Wang, 2025. "Dynamic Dual-Phase Forecasting Model for New Product Demand Using Machine Learning and Statistical Control," Mathematics, MDPI, vol. 13(10), pages 1-23, May.
- Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
- Ma, Shaohui & Fildes, Robert, 2020. "Forecasting third-party mobile payments with implications for customer flow prediction," International Journal of Forecasting, Elsevier, vol. 36(3), pages 739-760.
- Hadi NekoeiQachkanloo & Benyamin Ghojogh & Ali Saheb Pasand & Mark Crowley, 2019. "Artificial Counselor System for Stock Investment," Papers 1903.00955, arXiv.org.
- Martins, Guilherme Santos & Giesbrecht, Mateus, 2021. "Clearness index forecasting: A comparative study between a stochastic realization method and a machine learning algorithm," Renewable Energy, Elsevier, vol. 180(C), pages 787-805.
- Daniela Firoiu & George H. Ionescu & Cristian Mihai Cismaș & Melinda Petronela Costin & Laura Mariana Cismaș & Ștefan Codruț Florian Ciobanu, 2025. "Sustainable Production and Consumption in EU Member States: Achieving the 2030 Sustainable Development Goals (SDG 12)," Sustainability, MDPI, vol. 17(4), pages 1-26, February.
- Rossetti Renato, 2019. "Forecasting the Sales of Console Games for the Italian Market," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(3), pages 76-88, September.
- Mercedes Ayuso & Jorge M. Bravo & Robert Holzmann & Edward Palmer, 2021. "Automatic Indexation of the Pension Age to Life Expectancy: When Policy Design Matters," Risks, MDPI, vol. 9(5), pages 1-28, May.
- David Alaminos & M. Belén Salas & Manuel A. Fernández-Gámez, 2022. "Quantum Computing and Deep Learning Methods for GDP Growth Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 803-829, February.
- Hasnain Iftikhar & Josue E. Turpo-Chaparro & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Forecasting Day-Ahead Electricity Prices for the Italian Electricity Market Using a New Decomposition—Combination Technique," Energies, MDPI, vol. 16(18), pages 1-23, September.
- Marcelle Chauvet & Rafael R. S. Guimaraes, 2021. "Transfer Learning for Business Cycle Identification," Working Papers Series 545, Central Bank of Brazil, Research Department.
- Ozancan Ozdemir & Ceylan Yozgatligil, 2024. "Forecasting performance of machine learning, time series, and hybrid methods for low‐ and high‐frequency time series," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(2), pages 441-474, May.
- Yuxi Heluo & Kexin Wang & Charles W. Robson, 2023. "Do we listen to what we are told? An empirical study on human behaviour during the COVID-19 pandemic: neural networks vs. regression analysis," Papers 2311.13046, arXiv.org.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Pannee Suanpang & Pitchaya Jamjuntr, 2024. "Machine Learning Models for Solar Power Generation Forecasting in Microgrid Application Implications for Smart Cities," Sustainability, MDPI, vol. 16(14), pages 1-29, July.
- Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
- Andreea Valeria Vesa & Tudor Cioara & Ionut Anghel & Marcel Antal & Claudia Pop & Bogdan Iancu & Ioan Salomie & Vasile Teodor Dadarlat, 2020. "Energy Flexibility Prediction for Data Center Engagement in Demand Response Programs," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
- Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
- Weronika Ormaniec & Marcin Pitera & Sajad Safarveisi & Thorsten Schmidt, 2022. "Estimating value at risk: LSTM vs. GARCH," Papers 2207.10539, arXiv.org.
- Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
- Yang, Hu & Chen, Yu & Chen, Kedong & Wang, Haijun, 2024. "Temporal-spatial dependencies enhanced deep learning model for time series forecast," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Vaia I. Kontopoulou & Athanasios D. Panagopoulos & Ioannis Kakkos & George K. Matsopoulos, 2023. "A Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven Networks," Future Internet, MDPI, vol. 15(8), pages 1-31, July.
- Florian Rzepka & Philipp Hematty & Mano Schmitz & Julia Kowal, 2023. "Neural Network Architecture for Determining the Aging of Stationary Storage Systems in Smart Grids," Energies, MDPI, vol. 16(17), pages 1-20, August.
- Wellens, Arnoud P. & Udenio, Maxi & Boute, Robert N., 2022. "Transfer learning for hierarchical forecasting: Reducing computational efforts of M5 winning methods," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1482-1491.
- Sun-Feel Yang & So-Won Choi & Eul-Bum Lee, 2023. "A Prediction Model for Spot LNG Prices Based on Machine Learning Algorithms to Reduce Fluctuation Risks in Purchasing Prices," Energies, MDPI, vol. 16(11), pages 1-39, May.
- Wajeeha Badar & Shabana Ramzan & Ali Raza & Norma Latif Fitriyani & Muhammad Syafrudin & Seung Won Lee, 2025. "Enhanced Interpretable Forecasting of Cryptocurrency Prices Using Autoencoder Features and a Hybrid CNN-LSTM Model," Mathematics, MDPI, vol. 13(12), pages 1-22, June.
- Ortega, Luz C. & Otero, Luis Daniel & Solomon, Mitchell & Otero, Carlos E. & Fabregas, Aldo, 2023. "Deep learning models for visibility forecasting using climatological data," International Journal of Forecasting, Elsevier, vol. 39(2), pages 992-1004.
- J Rhet Montana & Luis A. Souto Arias & Pasquale Cirillo & Cornelis W. Oosterlee, 2024. "Quantum Majorization in Market Crash Prediction," Risks, MDPI, vol. 12(12), pages 1-18, December.
- Chen, Xia & Geyer, Philipp, 2022. "Machine assistance in energy-efficient building design: A predictive framework toward dynamic interaction with human decision-making under uncertainty," Applied Energy, Elsevier, vol. 307(C).
- Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
- Seok-Jun Bu & Sung-Bae Cho, 2020. "Time Series Forecasting with Multi-Headed Attention-Based Deep Learning for Residential Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-16, September.
- Satopää, Ville A. & Salikhov, Marat & Tetlock, Philip E. & Mellers, Barbara, 2023. "Decomposing the effects of crowd-wisdom aggregators: The bias–information–noise (BIN) model," International Journal of Forecasting, Elsevier, vol. 39(1), pages 470-485.
- Juan Tenorio & Wilder Perez, 2024. "Monthly GDP nowcasting with Machine Learning and Unstructured Data," Papers 2402.04165, arXiv.org.
- Wodecki Andrzej, 2020. "The Reserve Price Optimization for Publishers on Real-Time Bidding on-Line Marketplaces with Time-Series Forecasting," Foundations of Management, Sciendo, vol. 12(1), pages 167-180, January.
- Angelo Garangau Menezes & Saulo Martiello Mastelini, 2021. "MegazordNet: combining statistical and machine learning standpoints for time series forecasting," Papers 2107.01017, arXiv.org.
- Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
- M Belén Salas & David Alaminos & Manuel Angel Fernández & Francisco López-Valverde, 2020. "A global prediction model for sudden stops of capital flows using decision trees," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-22, February.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Traianos-Ioannis Theodorou & Alexandros Zamichos & Michalis Skoumperdis & Anna Kougioumtzidou & Kalliopi Tsolaki & Dimitris Papadopoulos & Thanasis Patsios & George Papanikolaou & Athanasios Konstanti, 2021. "An AI-Enabled Stock Prediction Platform Combining News and Social Sensing with Financial Statements," Future Internet, MDPI, vol. 13(6), pages 1-22, May.
- Olatunji, Kehinde O. & Ahmed, Noor A. & Madyira, Daniel M. & Adebayo, Ademola O. & Ogunkunle, Oyetola & Adeleke, Oluwatobi, 2022. "Performance evaluation of ANFIS and RSM modeling in predicting biogas and methane yields from Arachis hypogea shells pretreated with size reduction," Renewable Energy, Elsevier, vol. 189(C), pages 288-303.
- Roberto Casado-Vara & Angel Martin del Rey & Daniel Pérez-Palau & Luis de-la-Fuente-Valentín & Juan M. Corchado, 2021. "Web Traffic Time Series Forecasting Using LSTM Neural Networks with Distributed Asynchronous Training," Mathematics, MDPI, vol. 9(4), pages 1-21, February.
- Anna Almosova & Niek Andresen, 2023. "Nonlinear inflation forecasting with recurrent neural networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 240-259, March.
- Ioannis Papageorgiou & Ioannis Kontoyiannis, 2023. "The Bayesian Context Trees State Space Model for time series modelling and forecasting," Papers 2308.00913, arXiv.org, revised Oct 2023.
- Stef, Nicolae & Başağaoğlu, Hakan & Chakraborty, Debaditya & Ben Jabeur, Sami, 2023. "Does institutional quality affect CO2 emissions? Evidence from explainable artificial intelligence models," Energy Economics, Elsevier, vol. 124(C).
- Michael R. Johnson & Hiten Naik & Wei Siang Chan & Jesse Greiner & Matt Michaleski & Dong Liu & Bruno Silvestre & Ian P. McCarthy, 2023. "Forecasting ward-level bed requirements to aid pandemic resource planning: Lessons learned and future directions," Health Care Management Science, Springer, vol. 26(3), pages 477-500, September.
- Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366, arXiv.org, revised Mar 2021.
- Evangelos Spiliotis & Spyros Makridakis & Artemios-Anargyros Semenoglou & Vassilios Assimakopoulos, 2022. "Comparison of statistical and machine learning methods for daily SKU demand forecasting," Operational Research, Springer, vol. 22(3), pages 3037-3061, July.
- González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Fatemeh Tajik & Mingzheng Wang & Xiaohui Zhang & Jie Han, 2020. "Evaluation of the impact of body mass index on venous thromboembolism risk factors," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-17, July.
- Katsuya Ito & Kentaro Minami & Kentaro Imajo & Kei Nakagawa, 2020. "Trader-Company Method: A Metaheuristic for Interpretable Stock Price Prediction," Papers 2012.10215, arXiv.org.
- Ajith, Meenu & Martínez-Ramón, Manel, 2023. "Deep learning algorithms for very short term solar irradiance forecasting: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Icaro Romolo Sousa Agostino & Wesley Vieira da Silva & Claudimar Pereira da Veiga & Adriano Mendonça Souza, 2020. "Forecasting models in the manufacturing processes and operations management: Systematic literature review," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1043-1056, November.
- Faizal Hafiz & Jan Broekaert & Davide La Torre & Akshya Swain, 2021. "A Multi-criteria Approach to Evolve Sparse Neural Architectures for Stock Market Forecasting," Papers 2111.08060, arXiv.org.
- Pengfei Zhao & Haoren Zhu & Wilfred Siu Hung NG & Dik Lun Lee, 2024. "From GARCH to Neural Network for Volatility Forecast," Papers 2402.06642, arXiv.org.
- Mustafa Ozguven & Chong Yan Gao & Mohamed Yacine Si Tayeb, 2021. "The Utilization of Autoregressive Forecasting Models in Strategic Management," International Journal of Science and Business, IJSAB International, vol. 5(7), pages 170-185.
- Gürsakal Necmi & Yilmaz Fırat Melih & Uğurlu Erginbay, 2020. "Finding Opportunity Windows in Time Series Data Using the Sliding Window Technique: the Case of Stock Exchanges," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 24(3), pages 1-19, September.
- Fabrizio De Caro & Jacopo De Stefani & Gianluca Bontempi & Alfredo A. Vaccaro & Domenico D. Villacci, 2020. "Robust Assessment of Short-Term Wind Power Forecasting Models on Multiple Time Horizons," ULB Institutional Repository 2013/314435, ULB -- Universite Libre de Bruxelles.
- Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Principles from Experience with Forecasting Competitions," Forecasting, MDPI, vol. 3(1), pages 1-28, February.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
- Prosper Lamothe-Fernández & David Alaminos & Prosper Lamothe-López & Manuel A. Fernández-Gámez, 2020. "Deep Learning Methods for Modeling Bitcoin Price," Mathematics, MDPI, vol. 8(8), pages 1-13, July.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "The M5 competition: Background, organization, and implementation," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1325-1336.
- Jennifer L. Castle & Jurgen A. Doornik & David Hendry, 2019. "Some forecasting principles from the M4 competition," Economics Papers 2019-W01, Economics Group, Nuffield College, University of Oxford.
- Huber, Jakob & Stuckenschmidt, Heiner, 2021. "Intraday shelf replenishment decision support for perishable goods," International Journal of Production Economics, Elsevier, vol. 231(C).
- Lu, Jialiang & Zheng, Xu & Nervino, Esterina & Li, Yanzhi & Xu, Zhihua & Xu, Yabo, 2024. "Retail store location screening: A machine learning-based approach," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
- Meenakshi Narayan & Ann Majewicz Fey, 2020. "Developing a novel force forecasting technique for early prediction of critical events in robotics," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-34, May.
- Alain Zemkoho, 2023. "A Basic Time Series Forecasting Course with Python," SN Operations Research Forum, Springer, vol. 4(1), pages 1-43, March.
- Meriem Riad & Mohamed Naimi & Chafik Okar, 2024. "Enhancing Supply Chain Resilience Through Artificial Intelligence: Developing a Comprehensive Conceptual Framework for AI Implementation and Supply Chain Optimization," Logistics, MDPI, vol. 8(4), pages 1-26, November.