IDEAS home Printed from https://ideas.repec.org/r/eee/transb/v31y1997i3p265-276.html
   My bibliography  Save this item

Braess' paradox: Some new insights

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bittihn, Stefan & Schadschneider, Andreas, 2018. "Braess paradox in a network with stochastic dynamics and fixed strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 133-152.
  2. Shanjiang Zhu & David Levinson & Henry Liu, 2017. "Measuring winners and losers from the new I-35W Mississippi River Bridge," Transportation, Springer, vol. 44(5), pages 905-918, September.
  3. Anna Nagurney & Qiang Qiang, 2008. "An efficiency measure for dynamic networks modeled as evolutionary variational inequalities with application to the Internet and vulnerability analysis," Netnomics, Springer, vol. 9(1), pages 1-20, January.
  4. Zhao, Chunxue & Fu, Baibai & Wang, Tianming, 2014. "Braess paradox and robustness of traffic networks under stochastic user equilibrium," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 135-141.
  5. Morgan, John & Orzen, Henrik & Sefton, Martin, 2009. "Network architecture and traffic flows: Experiments on the Pigou-Knight-Downs and Braess Paradoxes," Games and Economic Behavior, Elsevier, vol. 66(1), pages 348-372, May.
  6. Xiaoning Zhang & H. Zhang, 2010. "Simultaneous Departure Time/Route Choices in Queuing Networks and a Novel Paradox," Networks and Spatial Economics, Springer, vol. 10(1), pages 93-112, March.
  7. Miller, Harvey J., 2013. "Beyond sharing: cultivating cooperative transportation systems through geographic information science," Journal of Transport Geography, Elsevier, vol. 31(C), pages 296-308.
  8. Eyran Gisches & Amnon Rapoport, 2012. "Degrading network capacity may improve performance: private versus public monitoring in the Braess Paradox," Theory and Decision, Springer, vol. 73(2), pages 267-293, August.
  9. Bagloee, Saeed Asadi & (Avi) Ceder, Avishai & Sarvi, Majid & Asadi, Mohsen, 2019. "Is it time to go for no-car zone policies? Braess Paradox Detection," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 251-264.
  10. Li, Xun & Rey, David & Dixit, Vinayak V., 2018. "An axiomatic characterization of fairness in transport networks: Application to road pricing and spatial equity," Transport Policy, Elsevier, vol. 68(C), pages 142-157.
  11. Yao, Jia & Huang, Wenhua & Chen, Anthony & Cheng, Zhanhong & An, Shi & Xu, Guangming, 2019. "Paradox links can improve system efficiency: An illustration in traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 35-49.
  12. Rapoport, Amnon & Kugler, Tamar & Dugar, Subhasish & Gisches, Eyran J., 2009. "Choice of routes in congested traffic networks: Experimental tests of the Braess Paradox," Games and Economic Behavior, Elsevier, vol. 65(2), pages 538-571, March.
  13. Ashraf, Muhammad Hasan & Chen, Yuwen & Yalcin, Mehmet G., 2022. "Minding Braess Paradox amid third-party logistics hub capacity expansion triggered by demand surge," International Journal of Production Economics, Elsevier, vol. 248(C).
  14. Takashi Akamatsu & Benjamin Heydecker, 2003. "Detecting Dynamic Traffic Assignment Capacity Paradoxes in Saturated Networks," Transportation Science, INFORMS, vol. 37(2), pages 123-138, May.
  15. Rapoport, Amnon & Mak, Vincent & Zwick, Rami, 2006. "Navigating congested networks with variable demand: Experimental evidence," Journal of Economic Psychology, Elsevier, vol. 27(5), pages 648-666, October.
  16. repec:osf:socarx:gzhm5_v1 is not listed on IDEAS
  17. Anna Nagurney & David Parkes & Patrizia Daniele, 2007. "The Internet, evolutionary variational inequalities, and the time-dependent Braess paradox," Computational Management Science, Springer, vol. 4(4), pages 355-375, October.
  18. Satoru Fujishige & Michel X. Goemans & Tobias Harks & Britta Peis & Rico Zenklusen, 2017. "Matroids Are Immune to Braess’ Paradox," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 745-761, August.
  19. (Walker) Wang, Wei & Wang, David Z.W. & Sun, Huijun & Feng, Zengzhe & Wu, Jianjun, 2016. "Braess Paradox of traffic networks with mixed equilibrium behaviors," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 95-114.
  20. Gutjahr, Walter J. & Dzubur, Nada, 2016. "Bi-objective bilevel optimization of distribution center locations considering user equilibria," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 1-22.
  21. Zhaolin Cheng & Laijun Zhao & Huiyong Li, 2020. "A Transportation Network Paradox: Consideration of Travel Time and Health Damage due to Pollution," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
  22. Sohn, Keemin, 2011. "Multi-objective optimization of a road diet network design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 499-511, July.
  23. Chung, Jin-Hyuk & Yeon Hwang, Kee & Kyung Bae, Yun, 2012. "The loss of road capacity and self-compliance: Lessons from the Cheonggyecheon stream restoration," Transport Policy, Elsevier, vol. 21(C), pages 165-178.
  24. Burgess, Matthew G. & Carrella, Ernesto & Drexler, Michael & Axtell, Robert L. & Bailey, Richard M. & Watson, James R. & Cabral, Reniel B. & Clemence, Michaela & Costello, Christopher & Dorsett, Chris, 2018. "Opportunities for agent-based modeling in human dimensions of fisheries," SocArXiv gzhm5, Center for Open Science.
  25. William H. Sandholm, 1997. "An Evolutionary Approach to Congestion," Discussion Papers 1198, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  26. Yang, Hai & Bell, Michael G. H., 1998. "A capacity paradox in network design and how to avoid it," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(7), pages 539-545, September.
  27. Bittihn, Stefan & Schadschneider, Andreas, 2021. "The effect of modern traffic information on Braess’ paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
  28. Yao, Jia & Cheng, Ziyi & Chen, Anthony, 2023. "Bibliometric analysis and systematic literature review of the traffic paradoxes (1968–2022)," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
  29. Rossi, Riccardo & Gastaldi, Massimiliano & Carturan, Federico & Pellegrino, Carlo & Modena, Claudio, 2012. "Planning and management of actions on transportation system to address extraordinary events in post-emergency situations. A multidisciplinary approach," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 51, pages 1-3.
  30. Bagloee, Saeed Asadi & Asadi, Mohsen, 2015. "Prioritizing road extension projects with interdependent benefits under time constraint," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 196-216.
  31. Novak, D.C. & Sullivan, J.F. & Sentoff, K. & Dowds, J., 2020. "A framework to guide strategic disinvestment in roadway infrastructure considering social vulnerability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 436-451.
  32. Wang, Aihu & Tang, Yuanhua & Mohmand, Yasir Tariq & Xu, Pei, 2022. "Modifying link capacity to avoid Braess Paradox considering elastic demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
  33. Prashker, Joseph N. & Bekhor, Shlomo, 2000. "Some observations on stochastic user equilibrium and system optimum of traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 34(4), pages 277-291, May.
  34. Di, Xuan & He, Xiaozheng & Guo, Xiaolei & Liu, Henry X., 2014. "Braess paradox under the boundedly rational user equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 86-108.
  35. Romilly, Peter, 2004. "Welfare evaluation with a road capacity constraint," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(4), pages 287-303, May.
  36. Yang, Chao & Chen, Anthony, 2009. "Sensitivity analysis of the combined travel demand model with applications," European Journal of Operational Research, Elsevier, vol. 198(3), pages 909-921, November.
  37. Hsun-Jung Cho & Yu-Kuang Chen, 2010. "Finding the ϵ-user Equilibrium Solution Using an Augmented Frank-Wolfe Algorithm," Networks and Spatial Economics, Springer, vol. 10(4), pages 473-485, December.
  38. Wei-Hua Lin & Hong K. Lo, 2009. "Investigating Braess' Paradox with Time-Dependent Queues," Transportation Science, INFORMS, vol. 43(1), pages 117-126, February.
  39. Hazelton, Martin L. & Najim, Lara, 2024. "Using traffic assignment models to assist Bayesian inference for origin–destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
  40. Yao, Jia & Chen, Anthony, 2014. "An analysis of logit and weibit route choices in stochastic assignment paradox," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 31-49.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.