IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v31y1997i3p265-276.html
   My bibliography  Save this article

Braess' paradox: Some new insights

Author

Listed:
  • Pas, Eric I.
  • Principio, Shari L.

Abstract

This paper examines some properties of the well-known Braess' paradox of traffic flow, in the context of the classical network configuration used by Braess. The paper shows that whether Braess' paradox does or does not occur depends on the conditions of the problem; namely, the link congestion function parameters and the demand for travel. In particular, this paper shows that for a given network with a given set of link congestion functions, Braess' paradox occurs only if the total demand for travel falls within a certain intermediate range of values (the bounds of which are dependent on the link congestion function parameters). The paper also shows that, depending on the problem parameters, adding a new link might not lead to a reduction in total system travel time, even if users are charged the marginal cost of traveling. On the other hand, there are ranges of values for the problem parameters for which the new link reduces total system travel time, as long as marginal cost pricing is implemented.

Suggested Citation

  • Pas, Eric I. & Principio, Shari L., 1997. "Braess' paradox: Some new insights," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 265-276, June.
  • Handle: RePEc:eee:transb:v:31:y:1997:i:3:p:265-276
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(96)00024-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dafermos, Stella & Nagurney, Anna, 1984. "On some traffic equilibrium theory paradoxes," Transportation Research Part B: Methodological, Elsevier, vol. 18(2), pages 101-110, April.
    2. Fisk, Caroline, 1979. "More paradoxes in the equilibrium assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 13(4), pages 305-309, December.
    3. Richard Steinberg & Willard I. Zangwill, 1983. "The Prevalence of Braess' Paradox," Transportation Science, INFORMS, vol. 17(3), pages 301-318, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shanjiang Zhu & David Levinson & Henry Liu, 2017. "Measuring winners and losers from the new I-35W Mississippi River Bridge," Transportation, Springer, vol. 44(5), pages 905-918, September.
    2. Koohyun Park, 2011. "Detecting Braess Paradox Based on Stable Dynamics in General Congested Transportation Networks," Networks and Spatial Economics, Springer, vol. 11(2), pages 207-232, June.
    3. Michael Patriksson, 2004. "Sensitivity Analysis of Traffic Equilibria," Transportation Science, INFORMS, vol. 38(3), pages 258-281, August.
    4. Takashi Akamatsu & Benjamin Heydecker, 2003. "Detecting Dynamic Traffic Assignment Capacity Paradoxes in Saturated Networks," Transportation Science, INFORMS, vol. 37(2), pages 123-138, May.
    5. Wei-Hua Lin & Hong K. Lo, 2009. "Investigating Braess' Paradox with Time-Dependent Queues," Transportation Science, INFORMS, vol. 43(1), pages 117-126, February.
    6. Bittihn, Stefan & Schadschneider, Andreas, 2021. "The effect of modern traffic information on Braess’ paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    7. Rapoport, Amnon & Kugler, Tamar & Dugar, Subhasish & Gisches, Eyran J., 2009. "Choice of routes in congested traffic networks: Experimental tests of the Braess Paradox," Games and Economic Behavior, Elsevier, vol. 65(2), pages 538-571, March.
    8. Penchina, Claude M., 1997. "Braess paradox: Maximum penalty in a minimal critical network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(5), pages 379-388, September.
    9. Rapoport, Amnon & Mak, Vincent & Zwick, Rami, 2006. "Navigating congested networks with variable demand: Experimental evidence," Journal of Economic Psychology, Elsevier, vol. 27(5), pages 648-666, October.
    10. Yao, Jia & Chen, Anthony, 2014. "An analysis of logit and weibit route choices in stochastic assignment paradox," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 31-49.
    11. Zhao, Chunxue & Fu, Baibai & Wang, Tianming, 2014. "Braess paradox and robustness of traffic networks under stochastic user equilibrium," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 135-141.
    12. Di, Xuan & He, Xiaozheng & Guo, Xiaolei & Liu, Henry X., 2014. "Braess paradox under the boundedly rational user equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 86-108.
    13. Yang, Chao & Chen, Anthony, 2009. "Sensitivity analysis of the combined travel demand model with applications," European Journal of Operational Research, Elsevier, vol. 198(3), pages 909-921, November.
    14. Satoru Fujishige & Michel X. Goemans & Tobias Harks & Britta Peis & Rico Zenklusen, 2017. "Matroids Are Immune to Braess’ Paradox," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 745-761, August.
    15. Xiao Han & Yun Yu & Bin Jia & Zi‐You Gao & Rui Jiang & H. Michael Zhang, 2021. "Coordination Behavior in Mode Choice: Laboratory Study of Equilibrium Transformation and Selection," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3635-3656, October.
    16. D E Boyce, 1984. "Urban Transportation Network-Equilibrium and Design Models: Recent Achievements and Future Prospects," Environment and Planning A, , vol. 16(11), pages 1445-1474, November.
    17. Bittihn, Stefan & Schadschneider, Andreas, 2018. "Braess paradox in a network with stochastic dynamics and fixed strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 133-152.
    18. Michael W. Mehaffy, 2018. "Neighborhood “Choice Architecture”: A New Strategy for Lower-Emissions Urban Planning?," Urban Planning, Cogitatio Press, vol. 3(2), pages 113-127.
    19. Yueyue Fan & Changzheng Liu, 2010. "Solving Stochastic Transportation Network Protection Problems Using the Progressive Hedging-based Method," Networks and Spatial Economics, Springer, vol. 10(2), pages 193-208, June.
    20. Chen, Yuh-Wen & Tzeng, Gwo-Hshiung, 2001. "Using fuzzy integral for evaluating subjectively perceived travel costs in a traffic assignment model," European Journal of Operational Research, Elsevier, vol. 130(3), pages 653-664, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:31:y:1997:i:3:p:265-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.