IDEAS home Printed from https://ideas.repec.org/r/eee/tefoso/v112y2016icp254-261.html
   My bibliography  Save this item

Two-stage innovation efficiency of new energy enterprises in China: A non-radial DEA approach

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
  2. Yang, Zhenbing & Shao, Shuai & Li, Chengyu & Yang, Lili, 2020. "Alleviating the misallocation of R&D inputs in China's manufacturing sector: From the perspectives of factor-biased technological innovation and substitution elasticity," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
  3. Yunyao Li & Yanji Ma, 2022. "Research on Industrial Innovation Efficiency and the Influencing Factors of the Old Industrial Base Based on the Lock-In Effect, a Case Study of Jilin Province, China," Sustainability, MDPI, vol. 14(19), pages 1-23, October.
  4. Zhu, Lin & Luo, Jian & Dong, Qingli & Zhao, Yang & Wang, Yunyue & Wang, Yong, 2021. "Green technology innovation efficiency of energy-intensive industries in China from the perspective of shared resources: Dynamic change and improvement path," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
  5. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
  6. Isaac Muiruri Gachanja & Stephen Irura Nganga & Lucy Maina Kiganane, 2020. "Influence of Leadership on Innovation Efficiency in Manufacturing Firms in Kenya," International Journal of Management, Knowledge and Learning, International School for Social and Business Studies, Celje, Slovenia, vol. 9(1), pages 43-57.
  7. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
  8. Chen, Xihui Haviour & Tee, Kienpin & Chang, Victor, 2022. "Accelerating Innovation Efficiency through Agile Leadership: The CEO Network Effects in China," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
  9. Shi, Xing & Wu, Yanrui & Fu, Dahai, 2020. "Does University-Industry collaboration improve innovation efficiency? Evidence from Chinese Firms⋄," Economic Modelling, Elsevier, vol. 86(C), pages 39-53.
  10. Sabri Boubaker & Riadh Manita & Salma Mefteh-Wali, 2022. "Foreign currency hedging and firm productive efficiency," Annals of Operations Research, Springer, vol. 313(2), pages 833-854, June.
  11. Xie, Hualin & Wang, Wei & Yang, Zihui & Choi, Yongrok, 2016. "Measuring the sustainable performance of industrial land utilization in major industrial zones of China," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 207-219.
  12. Zhong, Meirui & Huang, Gangli & He, Ruifang, 2022. "The technological innovation efficiency of China's lithium-ion battery listed enterprises: Evidence from a three-stage DEA model and micro-data," Energy, Elsevier, vol. 246(C).
  13. Małgorzata K. Guzowska & Barbara Kryk & Dorota Michalak & Paulina Szyja, 2021. "R&D Spending in the Energy Sector and Achieving the Goal of Climate Neutrality," Energies, MDPI, vol. 14(23), pages 1-25, November.
  14. Sueyoshi, Toshiyuki & Goto, Mika & Wang, Derek, 2017. "Malmquist index measurement for sustainability enhancement in Chinese municipalities and provinces," Energy Economics, Elsevier, vol. 67(C), pages 554-571.
  15. Hongli Liu & Xiaoyu Yan & Jinhua Cheng & Jun Zhang & Yan Bu, 2021. "Driving Factors for the Spatiotemporal Heterogeneity in Technical Efficiency of China’s New Energy Industry," Energies, MDPI, vol. 14(14), pages 1-21, July.
  16. Lin, Boqiang & Chen, Yufang, 2019. "Impacts of policies on innovation in wind power technologies in China," Applied Energy, Elsevier, vol. 247(C), pages 682-691.
  17. Youngbok Ryu & Toshiyuki Sueyoshi, 2021. "Examining the Relationship between the Economic Performance of Technology-Based Small Suppliers and Socially Sustainable Procurement," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
  18. He, Haonan & Li, Shiqiang & Wang, Shanyong & Zhang, Chaojia & Ma, Fei, 2023. "Value of dual-credit policy: Evidence from green technology innovation efficiency," Transport Policy, Elsevier, vol. 139(C), pages 182-198.
  19. Xiangyu Guo & Canhui Deng & Dan Wang & Xu Du & Jiali Li & Bowen Wan, 2021. "International Comparison of the Efficiency of Agricultural Science, Technology, and Innovation: A Case Study of G20 Countries," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
  20. Shih-Heng Yu, 2019. "Benchmarking and Performance Evaluation Towards the Sustainable Development of Regions in Taiwan: A Minimum Distance-Based Measure with Undesirable Outputs in Additive DEA," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(3), pages 1323-1348, August.
  21. Zhujia Yin & Yantuan Yu & Jianhuan Huang, 2018. "Evaluation and evolution of bank efficiency considering heterogeneity technology: An empirical study from China," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-19, October.
  22. Bresciani, Stefano & Puertas, Rosa & Ferraris, Alberto & Santoro, Gabriele, 2021. "Innovation, environmental sustainability and economic development: DEA-Bootstrap and multilevel analysis to compare two regions," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
  23. Jaeho Shin & Changhee Kim & Hongsuk Yang, 2018. "The Effect of Sustainability as Innovation Objectives on Innovation Efficiency," Sustainability, MDPI, vol. 10(6), pages 1-13, June.
  24. Miao, Cheng-lin & Duan, Meng-meng & Zuo, Yang & Wu, Xin-yu, 2021. "Spatial heterogeneity and evolution trend of regional green innovation efficiency--an empirical study based on panel data of industrial enterprises in China's provinces," Energy Policy, Elsevier, vol. 156(C).
  25. Wang, Ying & Zhang, Dayong & Ji, Qiang & Shi, Xunpeng, 2020. "Regional renewable energy development in China: A multidimensional assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
  26. Zhang, Zhongqingyang & Zhu, Huiming & Zhou, Zhongbao & Zou, Kai, 2022. "How does innovation matter for sustainable performance? Evidence from small and medium-sized enterprises," Journal of Business Research, Elsevier, vol. 153(C), pages 251-265.
  27. Li, Guangyao & Yang, Jin & Chen, Dingjiang & Hu, Shanying, 2017. "Impacts of the coming emission trading scheme on China’s coal-to-materials industry in 2020," Applied Energy, Elsevier, vol. 195(C), pages 837-849.
  28. Yaliu Yang & Yuan Wang & Cui Wang & Yingyan Zhang & Cuixia Zhang, 2022. "Temporal and Spatial Evolution of the Science and Technology Innovative Efficiency of Regional Industrial Enterprises: A Data-Driven Perspective," Sustainability, MDPI, vol. 14(17), pages 1-21, August.
  29. Sueyoshi, Toshiyuki & Ryu, Youngbok, 2022. "Performance assessment on technology transition from small businesses to the U.S. Department of Defense," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
  30. Xueling Guan & Lijiang Chen & Qing Xia & Zhaohui Qin, 2022. "Innovation Efficiency of Chinese Pharmaceutical Manufacturing Industry from the Perspective of Innovation Ecosystem," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
  31. Zhou, Wei & Chen, Jin, 2021. "Is R&D helpful for China’s energy technology and engineering industry to respond to external uncertainties?," Energy, Elsevier, vol. 226(C).
  32. Jiawei Yang & Lei Fang, 2022. "Average lexicographic efficiency decomposition in two-stage data envelopment analysis: an application to China’s regional high-tech innovation systems," Annals of Operations Research, Springer, vol. 312(2), pages 1051-1093, May.
  33. Jaeho Shin & Changhee Kim & Hongsuk Yang, 2019. "Does Reduction of Material and Energy Consumption Affect to Innovation Efficiency? The Case of Manufacturing Industry in South Korea," Energies, MDPI, vol. 12(6), pages 1-14, March.
  34. Wang, Qian & Ren, Shuming, 2022. "Evaluation of green technology innovation efficiency in a regional context: A dynamic network slacks-based measuring approach," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
  35. Antunes, Jorge Junio Moreira & Neves, Juliana Campos & Elmor, Larissa Rosa Carneiro & Araujo, Michel Fontaine Reis De & Wanke, Peter Fernandes & Tan, Yong, 2023. "A new perspective on the U.S. energy efficiency: The political context," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
  36. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2022. "Innovation efficiency and technology heterogeneity within China's new energy vehicle industry: A two-stage NSBM approach embedded in a three-hierarchy meta-frontier framework," Energy Policy, Elsevier, vol. 161(C).
  37. Shiping Mao & Marios Dominikos Kremantzis & Leonidas Sotirios Kyrgiakos & George Vlontzos, 2022. "R&D Performance Evaluation in the Chinese Food Manufacturing Industry Based on Dynamic DEA in the COVID-19 Era," Agriculture, MDPI, vol. 12(11), pages 1-19, November.
  38. Atta Mills, Ebenezer Fiifi Emire & Zeng, Kailin & Fangbiao, Liu & Fangyan, Li, 2021. "Modeling innovation efficiency, its micro-level drivers, and its impact on stock returns," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  39. Mohammad Nemati & Reza Kazemi Matin & Mehdi Toloo, 2020. "A two-stage DEA model with partial impacts between inputs and outputs: application in refinery industries," Annals of Operations Research, Springer, vol. 295(1), pages 285-312, December.
  40. Yu, Anyu & Zhang, Qin & Yu, Rongjian & Cheng, Yu, 2023. "More is better or in waste? A resource allocation measure of government grants for facilitating firm innovations," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
  41. Li, Hongkuan & He, Haiyan & Shan, Jiefei & Cai, Jingjing, 2019. "Innovation efficiency of semiconductor industry in China: A new framework based on generalized three-stage DEA analysis," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 136-148.
  42. Siran Fang & Xiaoshan Xue & Ge Yin & Hong Fang & Jialin Li & Yongnian Zhang, 2020. "Evaluation and Improvement of Technological Innovation Efficiency of New Energy Vehicle Enterprises in China Based on DEA-Tobit Model," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
  43. Puertas, Rosa & Marti, Luisa & Guaita-Martinez, José M., 2020. "Innovation, lifestyle, policy and socioeconomic factors: An analysis of European quality of life," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
  44. Kai Xu & Bart Bossink & Qiang Chen, 2019. "Efficiency Evaluation of Regional Sustainable Innovation in China: A Slack-Based Measure (SBM) Model with Undesirable Outputs," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
  45. Qiao, Sen & Chen, Hsing Hung & Zhang, Rong Rong, 2021. "Examining the impact of factor price distortions and social welfare on innovation efficiency from the microdata of Chinese renewable energy industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  46. Zhu, Lin & Cunningham, Scott W., 2022. "Unveiling the knowledge structure of technological forecasting and social change (1969–2020) through an NMF-based hierarchical topic model," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
  47. Cailou, Jiang & DeHai, Liu, 2022. "Does venture capital stimulate the innovation of China's new energy enterprises?," Energy, Elsevier, vol. 244(PA).
  48. Chen, Wei & Su, Zhi & Wang, Yanan & Wang, Qian & Zhao, Guoli, 2022. "Do the rank difference of industrial development zones affect land use efficiency? A regional analysis in China," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.