Assessment of Green Innovation Efficiency in Chinese Industrial Enterprises Based on an Improved Relational Two-Stage DEA Approach: Regional Disparities and Convergence Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- repec:fth:harver:1473 is not listed on IDEAS
- Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
- Song, Malin & Zhu, Shuai & Wang, Jianlin & Zhao, Jiajia, 2020. "Share green growth: Regional evaluation of green output performance in China," International Journal of Production Economics, Elsevier, vol. 219(C), pages 152-163.
- Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
- Wang, Chun-Hsien & Lu, Yung-Hsiang & Huang, Chin-Wei & Lee, Jun-Yen, 2013. "R&D, productivity, and market value: An empirical study from high-technology firms," Omega, Elsevier, vol. 41(1), pages 143-155.
- Fujii, Hidemichi & Managi, Shunsuke, 2019.
"Decomposition analysis of sustainable green technology inventions in China,"
Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 10-16.
- Fujii, Hidemichi & Managi, Shunsuke, 2018. "Decomposition analysis of sustainable green technology inventions in China," MPRA Paper 90251, University Library of Munich, Germany.
- Aytekin, Ahmet & Ecer, Fatih & Korucuk, Selçuk & Karamaşa, Çağlar, 2022. "Global innovation efficiency assessment of EU member and candidate countries via DEA-EATWIOS multi-criteria methodology," Technology in Society, Elsevier, vol. 68(C).
- Gen Li & Jingwen Wang & Fan Liu & Tao Wang & Ying Zhou & Airui Tian, 2023. "Regional Differences and Convergence of Technical Efficiency in China’s Marine Economy under Carbon Emission Constraints," Sustainability, MDPI, vol. 15(9), pages 1-17, May.
- Fei Liu & Ting Nan & Xinliang Wang, 2022. "Causes and Evolution Characteristics of Green Innovation Efficiency Loss: The Perspective of Factor Mismatch under Local Government Competition," Sustainability, MDPI, vol. 14(14), pages 1-29, July.
- Gao, Kang & Yuan, Yijun, 2022. "Spatiotemporal pattern assessment of China’s industrial green productivity and its spatial drivers: Evidence from city-level data over 2000–2017," Applied Energy, Elsevier, vol. 307(C).
- Wang, Ke & Huang, Wei & Wu, Jie & Liu, Ying-Nan, 2014.
"Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA,"
Omega, Elsevier, vol. 44(C), pages 5-20.
- Ke Wang & Wei Huang & Jie Wu & Ying-Nan Liu, 2014. "Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA," CEEP-BIT Working Papers 68, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- Chen, Yao & Liang, Liang & Zhu, Joe, 2009. "Equivalence in two-stage DEA approaches," European Journal of Operational Research, Elsevier, vol. 193(2), pages 600-604, March.
- Zhu, Lin & Luo, Jian & Dong, Qingli & Zhao, Yang & Wang, Yunyue & Wang, Yong, 2021. "Green technology innovation efficiency of energy-intensive industries in China from the perspective of shared resources: Dynamic change and improvement path," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
- Namazi, Mehdi & Mohammadi, Emran, 2018. "Natural resource dependence and economic growth: A TOPSIS/DEA analysis of innovation efficiency," Resources Policy, Elsevier, vol. 59(C), pages 544-552.
- Jun-liang Du & Yong Liu & Wei-xue Diao, 2019. "Assessing Regional Differences in Green Innovation Efficiency of Industrial Enterprises in China," IJERPH, MDPI, vol. 16(6), pages 1-23, March.
- Wang, Qunwei & Hang, Ye & Sun, Licheng & Zhao, Zengyao, 2016. "Two-stage innovation efficiency of new energy enterprises in China: A non-radial DEA approach," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 254-261.
- Bi, Kexin & Huang, Ping & Wang, Xiangxiang, 2016. "Innovation performance and influencing factors of low-carbon technological innovation under the global value chain: A case of Chinese manufacturing industry," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 275-284.
- Chen, Xiafei & Liu, Zhiying & Zhu, Qingyuan, 2020. "Reprint of "Performance evaluation of China's high-tech innovation process :Analysis based on the innovation value chain"," Technovation, Elsevier, vol. 94.
- Min, Sujin & Kim, Juseong & Sawng, Yeong-Wha, 2020. "The effect of innovation network size and public R&D investment on regional innovation efficiency," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
- Wanfang Shen & Jianing Shi & Qinggang Meng & Xiaolan Chen & Yufei Liu & Ken Cheng & Wenbin Liu, 2022. "Influences of Environmental Regulations on Industrial Green Technology Innovation Efficiency in China," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
- Paradi, Joseph C. & Rouatt, Stephen & Zhu, Haiyan, 2011. "Two-stage evaluation of bank branch efficiency using data envelopment analysis," Omega, Elsevier, vol. 39(1), pages 99-109, January.
- Li, Yongjun & Chen, Yao & Liang, Liang & Xie, Jianhui, 2012. "DEA models for extended two-stage network structures," Omega, Elsevier, vol. 40(5), pages 611-618.
- Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Feng & Zhu, Qingyuan & Chen, Zhi, 2019. "Allocating a fixed cost across the decision making units with two-stage network structures," Omega, Elsevier, vol. 83(C), pages 139-154.
- Yaliu Yang & Yuan Wang & Cui Wang & Yingyan Zhang & Cuixia Zhang, 2022. "Temporal and Spatial Evolution of the Science and Technology Innovative Efficiency of Regional Industrial Enterprises: A Data-Driven Perspective," Sustainability, MDPI, vol. 14(17), pages 1-21, August.
- Huang, Chin-wei & Ho, Foo Nin & Chiu, Yung-ho, 2014. "Measurement of tourist hotels׳ productive efficiency, occupancy, and catering service effectiveness using a modified two-stage DEA model in Taiwan," Omega, Elsevier, vol. 48(C), pages 49-59.
- He, Haonan & Li, Shiqiang & Wang, Shanyong & Zhang, Chaojia & Ma, Fei, 2023. "Value of dual-credit policy: Evidence from green technology innovation efficiency," Transport Policy, Elsevier, vol. 139(C), pages 182-198.
- Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
- An, Qingxian & Chen, Haoxun & Xiong, Beibei & Wu, Jie & Liang, Liang, 2017. "Target intermediate products setting in a two-stage system with fairness concern," Omega, Elsevier, vol. 73(C), pages 49-59.
- Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
- Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
- Jie Wu & Qingyuan Zhu & Junfei Chu & Liang Liang, 2015. "Two-Stage Network Structures with Undesirable Intermediate Outputs Reused: A DEA Based Approach," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 455-477, October.
- Wu, Huaqing & Lv, Kui & Liang, Liang & Hu, Hanhui, 2017. "Measuring performance of sustainable manufacturing with recyclable wastes: A case from China’s iron and steel industry," Omega, Elsevier, vol. 66(PA), pages 38-47.
- Wu, Jie & Zhu, Qingyuan & Ji, Xiang & Chu, Junfei & Liang, Liang, 2016. "Two-stage network processes with shared resources and resources recovered from undesirable outputs," European Journal of Operational Research, Elsevier, vol. 251(1), pages 182-197.
- Yunyao Li & Yanji Ma, 2022. "Research on Industrial Innovation Efficiency and the Influencing Factors of the Old Industrial Base Based on the Lock-In Effect, a Case Study of Jilin Province, China," Sustainability, MDPI, vol. 14(19), pages 1-23, October.
- Bresciani, Stefano & Puertas, Rosa & Ferraris, Alberto & Santoro, Gabriele, 2021. "Innovation, environmental sustainability and economic development: DEA-Bootstrap and multilevel analysis to compare two regions," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
- Kao, Chiang, 2016. "Efficiency decomposition and aggregation in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 255(3), pages 778-786.
- Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
- Wang, Ya & Pan, Jiao-feng & Pei, Rui-min & Yi, Bo-Wen & Yang, Guo-liang, 2020. "Assessing the technological innovation efficiency of China's high-tech industries with a two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
- Chen, Ya & Li, Yongjun & Liang, Liang & Salo, Ahti & Wu, Huaqing, 2016. "Frontier projection and efficiency decomposition in two-stage processes with slacks-based measures," European Journal of Operational Research, Elsevier, vol. 250(2), pages 543-554.
- Ang, Sheng & Chen, Chien-Ming, 2016. "Pitfalls of decomposition weights in the additive multi-stage DEA model," Omega, Elsevier, vol. 58(C), pages 139-153.
- Jianhui Xie & Xiaoxuan Zhu & Liang Liang, 2020. "A multiplicative method for estimating the potential gains from two-stage production system mergers," Annals of Operations Research, Springer, vol. 288(1), pages 475-493, May.
- Zhu, Lin & Luo, Jian & Dong, Qingli & Zhao, Yang & Wang, Yunyue & Wang, Yong, 2021. "Green technology innovation efficiency of energy-intensive industries in China from the perspective of shared resources: Dynamic change and improvement path," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6908-:d:1454599. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p6908-d1454599.html