IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v30y2008i1p76-96.html
   My bibliography  Save this item

Energy use efficiency in U.S. manufacturing: A nonparametric analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lita Iulian & Stamule Tănase, 2018. "Using non-parametric technical data envelopment analysis - DEA, for measuring productive technical efficiency," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 12(1), pages 533-543, May.
  2. Zhou, Guanghui & Chung, William & Zhang, Xiliang, 2013. "A study of carbon dioxide emissions performance of China's transport sector," Energy, Elsevier, vol. 50(C), pages 302-314.
  3. Qianqian Wu & Rong Wang, 2022. "Exploring the Role of Environmental Regulation and Fiscal Decentralization in Regional Energy Efficiency in the Context of Global Climate," IJERPH, MDPI, vol. 19(24), pages 1-19, December.
  4. Boyd, Gale A. & Lee, Jonathan M., 2019. "Measuring plant level energy efficiency and technical change in the U.S. metal-based durable manufacturing sector using stochastic frontier analysis," Energy Economics, Elsevier, vol. 81(C), pages 159-174.
  5. Yeh, Tsai-lien & Chen, Tser-yieth & Lai, Pei-ying, 2010. "A comparative study of energy utilization efficiency between Taiwan and China," Energy Policy, Elsevier, vol. 38(5), pages 2386-2394, May.
  6. Shi Wang & Hua Wang, 2022. "Can Global Value Chain Participation Drive Green Upgrade in China’s Manufacturing Industry?," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
  7. Bian, Yiwen & Hu, Miao & Wang, Yousen & Xu, Hao, 2016. "Energy efficiency analysis of the economic system in China during 1986–2012: A parallel slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 990-998.
  8. Jebali, Eya & Essid, Hédi & Khraief, Naceur, 2017. "The analysis of energy efficiency of the Mediterranean countries: A two-stage double bootstrap DEA approach," Energy, Elsevier, vol. 134(C), pages 991-1000.
  9. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Returns to scale and damages to scale on U.S. fossil fuel power plants: Radial and non-radial approaches for DEA environmental assessment," Energy Economics, Elsevier, vol. 34(6), pages 2240-2259.
  10. Qiao, Lu & Li, Lin & Fei, Junjun, 2022. "Information infrastructure and air pollution: Empirical analysis based on data from Chinese cities," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 563-573.
  11. Clara Inés Pardo Martínez, 2008. "Energy efficiency development in the German and Colombian Energy Intensive Sectors: A non-parametric analysis," Serie de Documentos en Economía y Violencia 6317, Centro de Investigaciones en Violencia, Instituciones y Desarrollo Económico (VIDE).
  12. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Yan, Ming-Zhe & Wang, Jian-Lin & Xie, Bai-Chen, 2019. "Which provincial administrative regions in China should reduce their coal consumption? An environmental energy input requirement function based analysis," Energy Policy, Elsevier, vol. 127(C), pages 51-63.
  13. He, Pinglin & Sun, Yulong & Niu, Hanlu & Long, Chengfeng & Li, Shufeng, 2021. "The long and short-term effects of environmental tax on energy efficiency: Perspective of OECD energy tax and vehicle traffic tax," Economic Modelling, Elsevier, vol. 97(C), pages 307-325.
  14. Liming Yao & Jiuping Xu & Yifan Li, 2014. "Evaluation of the Efficiency of Low Carbon Industrialization in Cultural and Natural Heritage: Taking Leshan as an Example," Sustainability, MDPI, vol. 6(6), pages 1-18, June.
  15. Djula Borozan & Mirjana Radman Funaric, 2018. "The Impact of Disaggregated Social Capital on Household Electricity Intensity," South-Eastern Europe Journal of Economics, Association of Economic Universities of South and Eastern Europe and the Black Sea Region, vol. 16(2), pages 189-207.
  16. Ouyang, Wendi & Yang, Jian-bo, 2020. "The network energy and environment efficiency analysis of 27 OECD countries: A multiplicative network DEA model," Energy, Elsevier, vol. 197(C).
  17. Honma, Satoshi & Hu, Jin-Li, 2014. "A panel data parametric frontier technique for measuring total-factor energy efficiency: An application to Japanese regions," Energy, Elsevier, vol. 78(C), pages 732-739.
  18. Feng, Chao & Wang, Miao, 2017. "The economy-wide energy efficiency in China’s regional building industry," Energy, Elsevier, vol. 141(C), pages 1869-1879.
  19. Tanaka, Kenta & Managi, Shunsuke, 2021. "Industrial agglomeration effect for energy efficiency in Japanese production plants," Energy Policy, Elsevier, vol. 156(C).
  20. Inglesi-Lotz, R. & Blignaut, J.N., 2012. "Electricity intensities of the OECD and South Africa: A comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4491-4499.
  21. Chen, Yu & Lin, Boqiang, 2021. "Understanding the green total factor energy efficiency gap between regional manufacturing—insight from infrastructure development," Energy, Elsevier, vol. 237(C).
  22. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
  23. Benchang Chen & Xiangfeng Ji & Xiangyan Ji, 2023. "Dynamic and Static Analysis of Carbon Emission Efficiency in China’s Transportation Sector," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
  24. Weibin Lin & Bin Chen & Lina Xie & Haoran Pan, 2015. "Estimating Energy Consumption of Transport Modes in China Using DEA," Sustainability, MDPI, vol. 7(4), pages 1-15, April.
  25. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
  26. Bhat, Javed Ahmad & Haider, Salman & Kamaiah, Bandi, 2018. "Interstate energy efficiency of Indian paper industry: A slack-based non-parametric approach," Energy, Elsevier, vol. 161(C), pages 284-298.
  27. Wang, Jiangquan & Ma, Xiaowei & Zhang, Jun & Zhao, Xin, 2022. "Impacts of digital technology on energy sustainability: China case study," Applied Energy, Elsevier, vol. 323(C).
  28. Blomberg, Jerry & Henriksson, Eva & Lundmark, Robert, 2012. "Energy efficiency and policy in Swedish pulp and paper mills: A data envelopment analysis approach," Energy Policy, Elsevier, vol. 42(C), pages 569-579.
  29. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
  30. Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
  31. Opeyemi Akinyemi & Philip O. Alege & Oluseyi O. Ajayi & Lloyd Amaghionyeodiwe & Adeyemi A. Ogundipe, 2015. "Fuel Subsidy Reform and Environmental Quality in Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 540-549.
  32. Dong, Feng & Li, Xiaohui & Long, Ruyin & Liu, Xiaoyan, 2013. "Regional carbon emission performance in China according to a stochastic frontier model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 525-530.
  33. Cui, Qiang & Kuang, Hai-bo & Wu, Chun-you & Li, Ye, 2014. "The changing trend and influencing factors of energy efficiency: The case of nine countries," Energy, Elsevier, vol. 64(C), pages 1026-1034.
  34. Sabuj Kumar Mandal & S Madheswaran, 2009. "Measuring Energy Use Efficiency in Presence of Undesirable Output: An Application of Data Envelopment Analysis (DEA) to Indian Cement Industry," Working Papers 235, Institute for Social and Economic Change, Bangalore.
  35. Zhang, Shanshan & Lundgren, Tommy & Zhou, Wenchao, 2016. "Energy efficiency in Swedish industry," Energy Economics, Elsevier, vol. 55(C), pages 42-51.
  36. Kepplinger, D. & Templ, M. & Upadhyaya, S., 2013. "Analysis of energy intensity in manufacturing industry using mixed-effects models," Energy, Elsevier, vol. 59(C), pages 754-763.
  37. Liao, Hua & Peng, Ying & Wang, Fang-Zhi & Zhang, Tong, 2022. "Understanding energy use growth: The role of investment-GDP ratio," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 15-24.
  38. Peter Grösche, 2009. "Measuring residential energy efficiency improvements with DEA," Journal of Productivity Analysis, Springer, vol. 31(2), pages 87-94, April.
  39. Yu, Yu & Wang, Derek D. & Li, Shanling & Shi, Qinfen, 2016. "Assessment of U.S. firm-level climate change performance and strategy," Energy Policy, Elsevier, vol. 92(C), pages 432-443.
  40. Oleg Badunenko & Subal C. Kumbhakar, 2020. "Energy Intensity and Long- and Short-Term Efficiency in US Manufacturing Industry," Energies, MDPI, vol. 13(15), pages 1-21, August.
  41. George Halkos & Kleoniki Natalia Petrou, 2019. "Analysing the Energy Efficiency of EU Member States: The Potential of Energy Recovery from Waste in the Circular Economy," Energies, MDPI, vol. 12(19), pages 1-32, September.
  42. Ghodeswar, Archana & Oliver, Matthew E., 2022. "Trading one waste for another? Unintended consequences of fly ash reuse in the Indian electric power sector," Energy Policy, Elsevier, vol. 165(C).
  43. Xueqin Lin & Dai Wang & Yuefang Si, 2015. "Spatially Differentiated Features of Coal Resource Utilisation Efficiency in China," Energy & Environment, , vol. 26(6-7), pages 1129-1145, November.
  44. Chai, Jian & Guo, Ju-E & Wang, Shou-Yang & Lai, Kin Keung, 2009. "Why does energy intensity fluctuate in China?," Energy Policy, Elsevier, vol. 37(12), pages 5717-5731, December.
  45. Silveria, Fernando Castellanos & Luken, Ralph A., 2008. "Global overview of industrial energy intensity," Energy Policy, Elsevier, vol. 36(7), pages 2658-2664, July.
  46. Bian, Yiwen & Yang, Feng, 2010. "Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon's entropy," Energy Policy, Elsevier, vol. 38(4), pages 1909-1917, April.
  47. Lin, Boqiang & Chen, Yu, 2020. "Transportation infrastructure and efficient energy services: A perspective of China's manufacturing industry," Energy Economics, Elsevier, vol. 89(C).
  48. Makridou, Georgia & Andriosopoulos, Kostas & Doumpos, Michael & Zopounidis, Constantin, 2016. "Measuring the efficiency of energy-intensive industries across European countries," Energy Policy, Elsevier, vol. 88(C), pages 573-583.
  49. Demiral, Elif E. & Sağlam, Ümit, 2021. "Eco-efficiency and Eco-productivity assessments of the states in the United States: A two-stage Non-parametric analysis," Applied Energy, Elsevier, vol. 303(C).
  50. Wu, F. & Fan, L.W. & Zhou, P. & Zhou, D.Q., 2012. "Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis," Energy Policy, Elsevier, vol. 49(C), pages 164-172.
  51. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
  52. Amjadi, Golnaz & Lundgren, Tommy, 2022. "Is industrial energy inefficiency transient or persistent? Evidence from Swedish manufacturing," Applied Energy, Elsevier, vol. 309(C).
  53. Xu, Xin & Cui, Qiang, 2017. "Evaluating airline energy efficiency: An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure," Energy, Elsevier, vol. 122(C), pages 274-286.
  54. Oggioni, G. & Riccardi, R. & Toninelli, R., 2011. "Eco-efficiency of the world cement industry: A data envelopment analysis," Energy Policy, Elsevier, vol. 39(5), pages 2842-2854, May.
  55. Cui, Qiang & Li, Ye, 2015. "Evaluating energy efficiency for airlines: An application of VFB-DEA," Journal of Air Transport Management, Elsevier, vol. 44, pages 34-41.
  56. Satoshi Honma & Jin-Li Hu, 2011. "Industry-level Total-factor Energy Efficiency in Developed Countries," Discussion Papers 51, Kyushu Sangyo University, Faculty of Economics.
  57. Nuri Ozgur DOGAN & Can Tansel TUGCU, 2015. "Energy Efficiency in Electricity Production: A Data Envelopment Analysis (DEA) Approach for the G-20 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 246-252.
  58. Shahateet, Mohammed & Bdour, Jaber, 2010. "Consumption of Electricity and Oil in Jordan: A non-parametric analysis using B-splines," MPRA Paper 57352, University Library of Munich, Germany, revised 2010.
  59. Bhattacharya, Mita & Inekwe, John Nkwoma & Sadorsky, Perry & Saha, Anjan, 2018. "Convergence of energy productivity across Indian states and territories," Energy Economics, Elsevier, vol. 74(C), pages 427-440.
  60. Honma, Satoshi & Hu, Jin-Li, 2014. "Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis," Applied Energy, Elsevier, vol. 119(C), pages 67-78.
  61. Apergis, Nicholas & Aye, Goodness C. & Barros, Carlos Pestana & Gupta, Rangan & Wanke, Peter, 2015. "Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs," Energy Economics, Elsevier, vol. 51(C), pages 45-53.
  62. Khayyat, Nabaz T. & Heshmati, Almas, 2014. "Production Risk, Energy Use Efficiency and Productivity of Korean Industries," Working Paper Series in Economics and Institutions of Innovation 359, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
  63. Zeng, Ximei & Zhou, Zhongbao & Gong, Yeming & Liu, Wenbin, 2022. "A data envelopment analysis model integrated with portfolio theory for energy mix adjustment: Evidence in the power industry," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
  64. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
  65. Cui, Qiang & Li, Ye, 2015. "An empirical study on the influencing factors of transportation carbon efficiency: Evidences from fifteen countries," Applied Energy, Elsevier, vol. 141(C), pages 209-217.
  66. Kohler, Marcel, 2014. "Differential electricity pricing and energy efficiency in South Africa," Energy, Elsevier, vol. 64(C), pages 524-532.
  67. Yanli Ji & Jie Xue & Zitian Fu, 2022. "Sustainable Development of Economic Growth, Energy-Intensive Industries and Energy Consumption: Empirical Evidence from China’s Provinces," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
  68. Macharia, Kenneth Kigundu & Gathiaka, John Kamau & Ngui, Dianah, 2022. "Energy efficiency in the Kenyan manufacturing sector," Energy Policy, Elsevier, vol. 161(C).
  69. Mandal, Sabuj Kumar, 2010. "Do undesirable output and environmental regulation matter in energy efficiency analysis? Evidence from Indian Cement Industry," Energy Policy, Elsevier, vol. 38(10), pages 6076-6083, October.
  70. Hsiao, Kai-Long, 2017. "To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method," Energy, Elsevier, vol. 130(C), pages 486-499.
  71. Wendong Lv & Xiaoxin Hong & Kuangnan Fang, 2015. "Chinese regional energy efficiency change and its determinants analysis: Malmquist index and Tobit model," Annals of Operations Research, Springer, vol. 228(1), pages 9-22, May.
  72. Huaping Sun & Bless Kofi Edziah & Xiaoqian Song & Anthony Kwaku Kporsu & Farhad Taghizadeh-Hesary, 2020. "Estimating Persistent and Transient Energy Efficiency in Belt and Road Countries: A Stochastic Frontier Analysis," Energies, MDPI, vol. 13(15), pages 1-19, July.
  73. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
  74. Wang, H. & Zhou, P. & Zhou, D.Q., 2013. "Scenario-based energy efficiency and productivity in China: A non-radial directional distance function analysis," Energy Economics, Elsevier, vol. 40(C), pages 795-803.
  75. Liao, Hua & Du, Yun-Fei & Huang, Zhimin & Wei, Yi-Ming, 2016. "Measuring energy economic efficiency: A mathematical programming approach," Applied Energy, Elsevier, vol. 179(C), pages 479-487.
  76. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Efficiency-based rank assessment for electric power industry: A combined use of Data Envelopment Analysis (DEA) and DEA-Discriminant Analysis (DA)," Energy Economics, Elsevier, vol. 34(3), pages 634-644.
  77. Idoko Ahmed Itodo & Shahrzad Safaeimanesh & Festus Victor Bekun, 2017. "Energy Use and Growth of Manufacturing Sector: Evidence from Turkey," Academic Journal of Economic Studies, Faculty of Finance, Banking and Accountancy Bucharest,"Dimitrie Cantemir" Christian University Bucharest, vol. 3(1), pages 88-96, March.
  78. Mukherjee, Kankana, 2008. "Energy use efficiency in the Indian manufacturing sector: An interstate analysis," Energy Policy, Elsevier, vol. 36(2), pages 662-672, February.
  79. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.
  80. Riccardi, R. & Oggioni, G. & Toninelli, R., 2012. "Efficiency analysis of world cement industry in presence of undesirable output: Application of data envelopment analysis and directional distance function," Energy Policy, Elsevier, vol. 44(C), pages 140-152.
  81. Amjadi, Golnaz, 2020. "Essays on Energy Efficiency, Environmental Regulation and Labor Demand in Swedish Industry," Umeå Economic Studies 982, Umeå University, Department of Economics.
  82. Hu, Baiding, 2014. "Measuring plant level energy efficiency in China's energy sector in the presence of allocative inefficiency," China Economic Review, Elsevier, vol. 31(C), pages 130-144.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.