IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v92y2016icp432-443.html
   My bibliography  Save this article

Assessment of U.S. firm-level climate change performance and strategy

Author

Listed:
  • Yu, Yu
  • Wang, Derek D.
  • Li, Shanling
  • Shi, Qinfen

Abstract

Climate change is becoming an increasingly critical concern for human society. While there has been a great deal of research on climate change performance at the country/region level, our research focuses on the study of firm-level environmental efficiency as a proxy for firms' climate change management. Using a unique data set on U.S. S&P 500 firms for the period 2012–2013 and DEA slack-based models, we obtain firms' environmental efficiencies in six sectors. The results show significant performance dispersions both across and within the sectors. We highlight each sector's pros and cons in the environmental performance and propose guidelines for policy makers to further improve climate change performance. We also evaluate firms' operational performance and propose a unified performance measure by integrating operational and environmental efficiencies. Overall, we find there is no significant relationship between operational and environmental efficiencies in any of the six industrial sectors under study. The unified performance measures are more driven by the environmental efficiency than the operational efficiency.

Suggested Citation

  • Yu, Yu & Wang, Derek D. & Li, Shanling & Shi, Qinfen, 2016. "Assessment of U.S. firm-level climate change performance and strategy," Energy Policy, Elsevier, vol. 92(C), pages 432-443.
  • Handle: RePEc:eee:enepol:v:92:y:2016:i:c:p:432-443
    DOI: 10.1016/j.enpol.2016.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516300441
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weber, Christopher L. & Peters, Glen P. & Guan, Dabo & Hubacek, Klaus, 2008. "The contribution of Chinese exports to climate change," Energy Policy, Elsevier, vol. 36(9), pages 3572-3577, September.
    2. Chang, Young-Tae & Zhang, Ning & Danao, Denise & Zhang, Nan, 2013. "Environmental efficiency analysis of transportation system in China: A non-radial DEA approach," Energy Policy, Elsevier, vol. 58(C), pages 277-283.
    3. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    4. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    5. Sözen, Adnan & Alp, Ihsan & Özdemir, Adnan, 2010. "Assessment of operational and environmental performance of the thermal power plants in Turkey by using data envelopment analysis," Energy Policy, Elsevier, vol. 38(10), pages 6194-6203, October.
    6. Okereke, Chukwumerije & McDaniels, Devin, 2012. "To what extent are EU steel companies susceptible to competitive loss due to climate policy?," Energy Policy, Elsevier, vol. 46(C), pages 203-215.
    7. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    8. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Slacks-based efficiency measures for modeling environmental performance," Ecological Economics, Elsevier, vol. 60(1), pages 111-118, November.
    9. Sullivan, Rory & Gouldson, Andy, 2013. "Ten years of corporate action on climate change: What do we have to show for it?," Energy Policy, Elsevier, vol. 60(C), pages 733-740.
    10. Mukherjee, Kankana, 2008. "Energy use efficiency in U.S. manufacturing: A nonparametric analysis," Energy Economics, Elsevier, vol. 30(1), pages 76-96, January.
    11. Wang, Derek & Li, Shanling & Sueyoshi, Toshiyuki, 2014. "DEA environmental assessment on U.S. Industrial sectors: Investment for improvement in operational and environmental performance to attain corporate sustainability," Energy Economics, Elsevier, vol. 45(C), pages 254-267.
    12. Mukherjee, Kankana, 2008. "Energy use efficiency in the Indian manufacturing sector: An interstate analysis," Energy Policy, Elsevier, vol. 36(2), pages 662-672, February.
    13. Zhou, Yan & Xing, Xinpeng & Fang, Kuangnan & Liang, Dapeng & Xu, Chunlin, 2013. "Environmental efficiency analysis of power industry in China based on an entropy SBM model," Energy Policy, Elsevier, vol. 57(C), pages 68-75.
    14. Randers, Jorgen, 2012. "Greenhouse gas emissions per unit of value added (“GEVA”) — A corporate guide to voluntary climate action," Energy Policy, Elsevier, vol. 48(C), pages 46-55.
    15. Lutsey, Nicholas & Sperling, Daniel, 2008. "America's bottom-up climate change mitigation policy," Energy Policy, Elsevier, vol. 36(2), pages 673-685, February.
    16. Erin M. Reid & Michael W. Toffel, 2009. "Responding to public and private politics: corporate disclosure of climate change strategies," Strategic Management Journal, Wiley Blackwell, vol. 30(11), pages 1157-1178, November.
    17. Liu, C.H. & Lin, Sue J. & Lewis, Charles, 2010. "Evaluation of thermal power plant operational performance in Taiwan by data envelopment analysis," Energy Policy, Elsevier, vol. 38(2), pages 1049-1058, February.
    18. Andrew King & Michael Lenox, 2002. "Exploring the Locus of Profitable Pollution Reduction," Management Science, INFORMS, vol. 48(2), pages 289-299, February.
    19. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    20. Erin Marie Reid & Michael W. Toffel, 2008. "Responding to Public and Private Politics: Corporate Disclosure of Climate Change Strategies," Harvard Business School Working Papers 09-019, Harvard Business School, revised Jun 2009.
    21. Sueyoshi, Toshiyuki & Goto, Mika & Ueno, Takahiro, 2010. "Performance analysis of US coal-fired power plants by measuring three DEA efficiencies," Energy Policy, Elsevier, vol. 38(4), pages 1675-1688, April.
    22. Sudhakara Reddy, B. & Assenza, Gaudenz B., 2009. "The great climate debate," Energy Policy, Elsevier, vol. 37(8), pages 2997-3008, August.
    23. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    24. Lutsey, Nicholas P. & Sperling, Dan, 2008. "America's Bottom-Up Climate Change Mitigation Policy," Institute of Transportation Studies, Working Paper Series qt8jj755d4, Institute of Transportation Studies, UC Davis.
    25. Michael E. Porter & Claas van der Linde, 1995. "Toward a New Conception of the Environment-Competitiveness Relationship," Journal of Economic Perspectives, American Economic Association, vol. 9(4), pages 97-118, Fall.
    26. Sueyoshi, Toshiyuki & Wang, Derek, 2014. "Sustainability development for supply chain management in U.S. petroleum industry by DEA environmental assessment," Energy Economics, Elsevier, vol. 46(C), pages 360-374.
    27. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    28. P. Byrnes & R. Färe & S. Grosskopf, 1984. "Measuring Productive Efficiency: An Application to Illinois Strip Mines," Management Science, INFORMS, vol. 30(6), pages 671-681, June.
    29. Robert D. Klassen & Curtis P. McLaughlin, 1996. "The Impact of Environmental Management on Firm Performance," Management Science, INFORMS, vol. 42(8), pages 1199-1214, August.
    30. Reiche, Danyel, 2013. "Climate policies in the U.S. at the stakeholder level: A case study of the National Football League," Energy Policy, Elsevier, vol. 60(C), pages 775-784.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Weiwei & Yu, Yu & Sun, Panpan, 2018. "Data envelopment analysis cross-like efficiency model for non-homogeneous decision-making units: The case of United States companies’ low-carbon investment to attain corporate sustainability," European Journal of Operational Research, Elsevier, vol. 269(1), pages 99-110.
    2. Xu, Tong & Zhu, Chunyan & Shi, Longyu & Gao, Lijie & Zhang, Miao, 2017. "Evaluating energy efficiency of public institutions in China," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 17-24.
    3. Fortune Ganda & Khazamula Samson Milondzo, 2018. "The Impact of Carbon Emissions on Corporate Financial Performance: Evidence from the South African Firms," Sustainability, MDPI, vol. 10(7), pages 1-22, July.
    4. Blanco, Christian C. & Caro, Felipe & Corbett, Charles J., 2020. "Do carbon abatement opportunities become less profitable over time? A global firm-level perspective using CDP data," Energy Policy, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    3. Zhang, Ning & Kong, Fanbin & Choi, Yongrok & Zhou, P., 2014. "The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants," Energy Policy, Elsevier, vol. 70(C), pages 193-200.
    4. Sahoo, Nihar R. & Mohapatra, Pratap K.J. & Sahoo, Biresh K. & Mahanty, Biswajit, 2017. "Rationality of energy efficiency improvement targets under the PAT scheme in India – A case of thermal power plants," Energy Economics, Elsevier, vol. 66(C), pages 279-289.
    5. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    6. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Japanese fuel mix strategy after disaster of Fukushima Daiichi nuclear power plant: Lessons from international comparison among industrial nations measured by DEA environmental assessment in time hori," Energy Economics, Elsevier, vol. 52(PA), pages 87-103.
    7. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    8. Sueyoshi, Toshiyuki & Yuan, Yan, 2015. "Comparison among U.S. industrial sectors by DEA environmental assessment: Equipped with analytical capability to handle zero or negative in production factors," Energy Economics, Elsevier, vol. 52(PA), pages 69-86.
    9. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Environmental assessment on coal-fired power plants in U.S. north-east region by DEA non-radial measurement," Energy Economics, Elsevier, vol. 50(C), pages 125-139.
    10. Sueyoshi, Toshiyuki & Yuan, Yan, 2016. "Returns to damage under undesirable congestion and damages to return under desirable congestion measured by DEA environmental assessment with multiplier restriction: Economic and energy planning for s," Energy Economics, Elsevier, vol. 56(C), pages 288-309.
    11. Long, Xingle & Wu, Chao & Zhang, Jijian & Zhang, Jing, 2018. "Environmental efficiency for 192 thermal power plants in the Yangtze River Delta considering heterogeneity: A metafrontier directional slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3962-3971.
    12. Zhang, Ning & Choi, Yongrok, 2013. "A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea," Energy Policy, Elsevier, vol. 62(C), pages 324-332.
    13. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    14. Noor Ramli & Susila Munisamy & Behrouz Arabi, 2013. "Scale directional distance function and its application to the measurement of eco-efficiency in the manufacturing sector," Annals of Operations Research, Springer, vol. 211(1), pages 381-398, December.
    15. Bian, Yiwen & Hu, Miao & Wang, Yousen & Xu, Hao, 2016. "Energy efficiency analysis of the economic system in China during 1986–2012: A parallel slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 990-998.
    16. Yigang Wei & Yan Li & Meiyu Wu & Yingbo Li, 2020. "Progressing sustainable development of “the Belt and Road countries”: Estimating environmental efficiency based on the Super‐slack‐based measure model," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 521-539, July.
    17. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "DEA environmental assessment in time horizon: Radial approach for Malmquist index measurement on petroleum companies," Energy Economics, Elsevier, vol. 51(C), pages 329-345.
    18. Wang, Zhaohua & Feng, Chao, 2015. "Sources of production inefficiency and productivity growth in China: A global data envelopment analysis," Energy Economics, Elsevier, vol. 49(C), pages 380-389.
    19. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    20. Xiaowei Song & Yongpei Hao & Xiaodong Zhu, 2015. "Analysis of the Environmental Efficiency of the Chinese Transportation Sector Using an Undesirable Output Slacks-Based Measure Data Envelopment Analysis Model," Sustainability, MDPI, vol. 7(7), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:92:y:2016:i:c:p:432-443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.