IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "Forecast combination and the Bank of England’s suite of statistical forecasting models"

by George Kapetanios & Vincent Labhard & Simon Price

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Goodness C. Aye & Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar, 2013. "Forecasting Aggregate Retail Sales: The Case of South Africa," Working Papers 201312, University of Pretoria, Department of Economics.
  2. Hilde C. Bjørnland & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud & Christie Smith, 2010. "Does forecast combination improve Norges Bank inflation forecasts?," Working Papers 0002, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  3. Koop, Gary & Korobilis, Dimitris, 2011. "UK Macroeconomic Forecasting with Many Predictors: Which Models Forecast Best and When Do They Do So?," SIRE Discussion Papers 2011-39, Scottish Institute for Research in Economics (SIRE).
  4. Andersson, Michael K & Karlsson, Sune, 2007. "Bayesian forecast combination for VAR models," Working Paper Series 216, Sveriges Riksbank (Central Bank of Sweden).
  5. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
  6. Eliana González & Luis F. Melo & Viviana Monroy & Brayan Rojas, 2009. "A Dynamic Factor Model For The Colombian Inflation," BORRADORES DE ECONOMIA 005273, BANCO DE LA REPÚBLICA.
  7. Charles Rahal, 2015. "House Price Forecasts with Factor Combinations," Discussion Papers 15-05, Department of Economics, University of Birmingham.
  8. Antoine Mandel & Amir Sani, 2016. "Learning Time-Varying Forecast Combinations," Documents de travail du Centre d'Economie de la Sorbonne 16036, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  9. Zhang, Xinyu & Wan, Alan T.K. & Zou, Guohua, 2013. "Model averaging by jackknife criterion in models with dependent data," Journal of Econometrics, Elsevier, vol. 174(2), pages 82-94.
  10. Marcellino, Massimiliano & Schumacher, Christian, 2008. "Factor-MIDAS for now- and forecasting with ragged-edge data: A model comparison for German GDP," CEPR Discussion Papers 6708, C.E.P.R. Discussion Papers.
  11. Katerina Arnostova & David Havrlant & Luboš Rùžièka & Peter Tóth, 2011. "Short-Term Forecasting of Czech Quarterly GDP Using Monthly Indicators," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 61(6), pages 566-583, December.
  12. Adam Jêdrzejczyk, 2012. "Inflation forecasting using dynamic factor analysis. SAS 4GL programming approach," Working Papers 63, Department of Applied Econometrics, Warsaw School of Economics.
  13. Arvydas Jadevicius & Brian Sloan & Andrew Brown, 2012. "Examination of property forecasting models - accuracy and its improvement through combination forecasting," ERES eres2012_082, European Real Estate Society (ERES).
  14. Marie Diron & Benoît Mojon, 2008. "Are inflation targets good inflation forecasts?," Economic Perspectives, Federal Reserve Bank of Chicago, issue Q II, pages 33-45.
  15. Selen Baser Andic & Fethi Ogunc, 2015. "Variable Selection for Inflation : A Pseudo Out-of-sample Approach," Working Papers 1506, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
  16. Massimiliano Marcellino & Christian Schumacher, 2008. "Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP1," Working Papers 333, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  17. Charalampos Stasinakis & Georgios Sermpinis & Konstantinos Theofilatos & Andreas Karathanasopoulos, 2016. "Forecasting US Unemployment with Radial Basis Neural Networks, Kalman Filters and Support Vector Regressions," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 569-587, April.
  18. Reason Lesego Machete, 2011. "Early Warning with Calibrated and Sharper Probabilistic Forecasts," Papers 1112.6390, arXiv.org, revised Jan 2012.
  19. Bell, Venetia & Co, Lai Wah & Stone, Sophie & Wallis, gavin`, 2014. "Nowcasting UK GDP growth," Bank of England Quarterly Bulletin, Bank of England, vol. 54(1), pages 58-68.
  20. Arvydas Jadevicius & Brian Sloan & Andrew Brown, 2013. "Property Market Modelling and Forecasting: A Case for Simplicity," ERES eres2013_10, European Real Estate Society (ERES).
  21. Chris Florakis & Gianluigi Giorgioni & Alexandros Kostakis & Costas Milas, 2012. "The Impact of Stock Market Illiquidity on Real UK GDP Growth," Working Paper Series 65_12, The Rimini Centre for Economic Analysis.
  22. Fawcett, Nicholas & Koerber, Lena & Masolo, Riccardo & Waldron, Matthew, 2015. "Evaluating UK point and density forecasts from an estimated DSGE model: the role of off-model information over the financial crisis," Bank of England working papers 538, Bank of England.
  23. Chris Bloor, 2009. "The use of statistical forecasting models at the Reserve Bank of New Zealand," Reserve Bank of New Zealand Bulletin, Reserve Bank of New Zealand, vol. 72, pages 21-26, June.
  24. Marian Vavra, 2015. "On a Bootstrap Test for Forecast Evaluations," Working and Discussion Papers WP 5/2015, Research Department, National Bank of Slovakia.
  25. Davor Kunovac, 2007. "Factor Model Forecasting of Inflation in Croatia," Financial Theory and Practice, Institute of Public Finance, vol. 31(4), pages 371-393.
  26. Andrejs Bessonovs, 2015. "Suite of Latvia's GDP forecasting models," Working Papers 2015/01, Latvijas Banka.
  27. Öğünç, Fethi & Akdoğan, Kurmaş & Başer, Selen & Chadwick, Meltem Gülenay & Ertuğ, Dilara & Hülagü, Timur & Kösem, Sevim & Özmen, Mustafa Utku & Tekatlı, Necati, 2013. "Short-term inflation forecasting models for Turkey and a forecast combination analysis," Economic Modelling, Elsevier, vol. 33(C), pages 312-325.
  28. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05r, Department of Economics, University of Birmingham.
  29. Altavilla, Carlo & Ciccarelli, Matteo, 2010. "Evaluating the effect of monetary policy on unemployment with alternative inflation forecasts," Economic Modelling, Elsevier, vol. 27(1), pages 237-253, January.
  30. Florackis, Chris & Giorgioni, Gianluigi & Kostakis, Alexandros & Milas, Costas, 2014. "On stock market illiquidity and real-time GDP growth," Journal of International Money and Finance, Elsevier, vol. 44(C), pages 210-229.
  31. Muhammad Nadim Hanif & Muhammad Jahanzeb Malik, 2015. "Evaluating the Performance of Inflation Forecasting Models of Pakistan," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 11, pages 43-78.
  32. Fabio Bacchini & Cristina Brandimarte & Piero Crivelli & Roberta De Santis & Marco Fioramanti & Alessandro Girardi & Roberto Golinelli & Cecilia Jona-Lasinio & Massimo Mancini & Carmine Pappalardo & D, 2013. "Building the core of the Istat system of models for forecasting the Italian economy: MeMo-It," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 15(1), pages 17-45.
  33. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
  34. Groen, Jan J.J. & Kapetanios, George & Price, Simon, 2009. "A real time evaluation of Bank of England forecasts of inflation and growth," International Journal of Forecasting, Elsevier, vol. 25(1), pages 74-80.
  35. Diron, Marie & Mojon, Benoît, 2005. "Forecasting the central bank’s inflation objective is a good rule of thumb," Working Paper Series 0564, European Central Bank.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.