IDEAS home Printed from https://ideas.repec.org/p/wse/wpaper/63.html
   My bibliography  Save this paper

Inflation forecasting using dynamic factor analysis. SAS 4GL programming approach

Author

Listed:
  • Adam Jêdrzejczyk

    (Warsaw School of Economics)

Abstract

The purpose of this article is to introduce an original macro code written in SAS 4GL. This macro is used to automate the process of forecasting with dynamic factor analysis. Automation of the process helps to save significant amounts of time and effort for the researcher. It also enables to compare different model specifications directly and, hence, to make conclusions that would be imperceptible without such automation, which is shown on the empirical study example.

Suggested Citation

  • Adam Jêdrzejczyk, 2012. "Inflation forecasting using dynamic factor analysis. SAS 4GL programming approach," Working Papers 63, Department of Applied Econometrics, Warsaw School of Economics.
  • Handle: RePEc:wse:wpaper:63
    as

    Download full text from publisher

    File URL: http://kolegia.sgh.waw.pl/pl/KAE/struktura/IE/struktura/ZES/Documents/Working_Papers/aewp04-12.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    2. Jörg Breitung & Sandra Eickmeier, 2006. "Dynamic factor models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 27-42, March.
    3. Altissimo, Filippo & Bassanetti, Antonio & Cristadoro, Riccardo & Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia & Veronese, Giovanni, 2001. "EuroCOIN: A Real Time Coincident Indicator of the Euro Area Business Cycle," CEPR Discussion Papers 3108, C.E.P.R. Discussion Papers.
    4. Vansteenkiste, Isabel, 2009. "How important are common factors in driving non-fuel commodity prices? A dynamic factor analysis," Working Paper Series 1072, European Central Bank.
    5. Eickmeier, Sandra, 2007. "Business cycle transmission from the US to Germany--A structural factor approach," European Economic Review, Elsevier, vol. 51(3), pages 521-551, April.
    6. Cristadoro, Riccardo & Forni, Mario & Reichlin, Lucrezia & Veronese, Giovanni, 2005. "A Core Inflation Indicator for the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 539-560, June.
    7. Forni, Mario & Lippi, Marco, 1997. "Aggregation and the Microfoundations of Dynamic Macroeconomics," OUP Catalogue, Oxford University Press, number 9780198288008.
    8. James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
    9. Del Negro, Marco & Otrok, Christopher, 2007. "99 Luftballons: Monetary policy and the house price boom across U.S. states," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 1962-1985, October.
    10. Elena Angelini & Jérôme Henry & Ricardo Mestre, 2001. "Diffusion index-based inflation forecasts for the euro area," BIS Papers chapters,in: Bank for International Settlements (ed.), Empirical studies of structural changes and inflation, volume 3, pages 109-138 Bank for International Settlements.
    11. Kapetanios, George & Labhard, Vincent & Price, Simon, 2008. "Forecast combination and the Bank of England's suite of statistical forecasting models," Economic Modelling, Elsevier, vol. 25(4), pages 772-792, July.
    12. Geweke, John F. & Singleton, Kenneth J., 1981. "Latent variable models for time series : A frequency domain approach with an application to the permanent income hypothesis," Journal of Econometrics, Elsevier, vol. 17(3), pages 287-304, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    statistical programming; forecasting; factor models; inflation;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wse:wpaper:63. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marcin Owczarczuk) or (The York Management School). General contact details of provider: http://edirc.repec.org/data/dxwawpl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.