IDEAS home Printed from https://ideas.repec.org/p/zbw/dicedp/20.html
   My bibliography  Save this paper

A comparative analysis of alternative univariate time series models in forecasting Turkish inflation

Author

Listed:
  • Catik, A. Nazif
  • Karaçuka, Mehmet

Abstract

This paper analyses inflation forecasting power of artificial neural networks with alternative univariate time series models for Turkey. The forecasting accuracy of the models is compared in terms of both static and dynamic forecasts for the period between 1982:1 and 2009:12. We find that at earlier forecast horizons conventional models, especially ARFIMA and ARIMA, provide better one-step ahead forecasting performance. However, unobserved components model turns out to be the best performer in terms of dynamic forecasts. The superiority of the unobserved components model suggests that inflation in Turkey has time varying pattern and conventional models are not able to track underlying trend of inflation in the long run.

Suggested Citation

  • Catik, A. Nazif & Karaçuka, Mehmet, 2011. "A comparative analysis of alternative univariate time series models in forecasting Turkish inflation," DICE Discussion Papers 20, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
  • Handle: RePEc:zbw:dicedp:20
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frederic S. Mishkin, 2000. "Inflation Targeting in Emerging-Market Countries," American Economic Review, American Economic Association, vol. 90(2), pages 105-109, May.
    2. Steven Gonzalez, "undated". "Neural Networks for Macroeconomic Forecasting: A Complementary Approach to Linear Regression Models," Working Papers-Department of Finance Canada 2000-07, Department of Finance Canada.
    3. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Yiquan & Wenzel, Tobias, 2012. "Transparency, entry, and productivity," Economics Letters, Elsevier, vol. 115(1), pages 7-10.
    2. Stühmeier Torben & Wenzel Tobias, 2012. "Regulating Advertising in the Presence of Public Service Broadcasting," Review of Network Economics, De Gruyter, vol. 11(2), pages 1-23, June.
    3. Clémence Christin, 2013. "Entry Deterrence Through Cooperative R&D Over-Investment," Recherches économiques de Louvain, De Boeck Université, vol. 79(2), pages 5-26.
    4. Haucap, Justus & Herr, Annika & Frank, Björn, 2011. "In vino veritas: Theory and evidence on social drinking," DICE Discussion Papers 37, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haider, Adnan & Hanif, Muhammad Nadeem, 2007. "Inflation Forecasting in Pakistan using Artificial Neural Networks," MPRA Paper 14645, University Library of Munich, Germany.
    2. Nakamura, Emi, 2005. "Inflation forecasting using a neural network," Economics Letters, Elsevier, vol. 86(3), pages 373-378, March.
    3. Jean‐Louis Combes & Xavier Debrun & Alexandru Minea & René Tapsoba, 2018. "Inflation Targeting, Fiscal Rules and the Policy Mix: Cross‐effects and Interactions," Economic Journal, Royal Economic Society, vol. 128(615), pages 2755-2784, November.
    4. Alpanda, Sami & Honig, Adam, 2014. "The impact of central bank independence on the performance of inflation targeting regimes," Journal of International Money and Finance, Elsevier, vol. 44(C), pages 118-135.
    5. Edward Ghartey, 2006. "Exchange Pressure, Sterilized Intervention and Monetary Policy in Ghana," EcoMod2006 272100031, EcoMod.
    6. Banerjee, Anindya & Marcellino, Massimiliano, 2006. "Are there any reliable leading indicators for US inflation and GDP growth?," International Journal of Forecasting, Elsevier, vol. 22(1), pages 137-151.
    7. Sumera Arshad & Amajd Ali, 2016. "Trade-off between Inflation, Interest and Unemployment Rate of Pakistan: Revisited," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 5(4), pages 193-209, December.
    8. Wright, Jonathan H., 2008. "Bayesian Model Averaging and exchange rate forecasts," Journal of Econometrics, Elsevier, vol. 146(2), pages 329-341, October.
    9. Diebold, Francis X & Kilian, Lutz, 2000. "Unit-Root Tests Are Useful for Selecting Forecasting Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 265-273, July.
    10. Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    11. Guillermo Ortiz, 2000. "How should monetary policymakers react to the new challenges of global economic integration: commentary," Proceedings - Economic Policy Symposium - Jackson Hole, Federal Reserve Bank of Kansas City, pages 255-276.
    12. Holtemöller, Oliver & Mallick, Sushanta, 2016. "Global food prices and monetary policy in an emerging market economy: The case of India," Journal of Asian Economics, Elsevier, vol. 46(C), pages 56-70.
    13. Arman Mansoorian & Mohammed Mohsin, 2004. "Monetary policy in a cash-in-advance economy: employment, capital accumulation, and the term structure of interest rates," Canadian Journal of Economics, Canadian Economics Association, vol. 37(2), pages 336-352, May.
    14. Gabriel Caldas Montes & Victor Maia, 2023. "The reaction of disagreements in inflation expectations to fiscal sentiment obtained from information in official communiqués," Bulletin of Economic Research, Wiley Blackwell, vol. 75(4), pages 828-859, October.
    15. Akhand Akhtar Hossain, 2009. "Central Banking and Monetary Policy in the Asia-Pacific," Books, Edward Elgar Publishing, number 12777.
    16. Sushanta K. Mallick & Mohammed Mohsin, 2016. "Macroeconomic Effects of Inflationary Shocks with Durable and Non-Durable Consumption," Open Economies Review, Springer, vol. 27(5), pages 895-921, November.
    17. Guy Debelle, 2001. "The Case for Inflation Targeting in East Asian Countries," RBA Annual Conference Volume (Discontinued), in: David Gruen & John Simon (ed.),Future Directions for Monetary Policies in East Asia, Reserve Bank of Australia.
    18. Vito Polito & Yunyi Zhang, 2021. "Tackling Large Outliers in Macroeconomic Data with Vector Artificial Neural Network Autoregression," CESifo Working Paper Series 9395, CESifo.
    19. Massimiliano Marcellino, "undated". "Forecast pooling for short time series of macroeconomic variables," Working Papers 212, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    20. Minella, Andre & de Freitas, Paulo Springer & Goldfajn, Ilan & Muinhos, Marcelo Kfoury, 2003. "Inflation targeting in Brazil: constructing credibility under exchange rate volatility," Journal of International Money and Finance, Elsevier, vol. 22(7), pages 1015-1040, December.

    More about this item

    Keywords

    Inflation forecasting; Neural networks; Unobserved components model;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:dicedp:20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/diduede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.