IDEAS home Printed from https://ideas.repec.org/p/zbw/caseps/200411.html
   My bibliography  Save this paper

(Non) Linear Regression Modeling

Author

Listed:
  • Čížek, Pavel

Abstract

We will study causal relationships of a known form between random variables. Given a model, we distinguish one or more dependent (endogenous) variables Y = (Y1, . . . , Yl), l ∈ N, which are explained by a model, and independent (exogenous, explanatory) variables X = (X1, . . . ,Xp), p ∈ N, which explain or predict the dependent variables by means of the model. Such relationships and models are commonly referred to as regression models.

Suggested Citation

  • Čížek, Pavel, 2004. "(Non) Linear Regression Modeling," Papers 2004,11, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
  • Handle: RePEc:zbw:caseps:200411
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/22185/1/11_pc.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Wang, Song-Gui & Chow, Shein-Chung, 1990. "A note on adaptive generalized ridge regression estimator," Statistics & Probability Letters, Elsevier, vol. 10(1), pages 17-21, June.
    2. Hawkins, Douglas M. & Yin, Xiangrong, 2002. "A faster algorithm for ridge regression of reduced rank data," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 253-262, August.
    3. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339 Elsevier.
    4. Dagenais, Marcel G., 1983. "Extension of the ridge regression technique to non-linear models with additive errors," Economics Letters, Elsevier, vol. 12(2), pages 169-174.
    5. Anders Björkström, 1999. "A Generalized View on Continuum Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(1), pages 17-30.
    6. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339 Elsevier.
    7. Kadiyala, Krishna, 1984. "A class of almost unbiased and efficient estimators of regression coefficients," Economics Letters, Elsevier, vol. 16(3-4), pages 293-296.
    8. Watanabe, Toshiaki, 1999. "A Non-linear Filtering Approach to Stochastic Volatility Models with an Application to Daily Stock Returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 101-121, March-Apr.
    9. Ullah, A. & Srivastava, V. K. & Chandra, R., 1983. "Properties of shrinkage estimators in linear regression when disturbances are not normal," Journal of Econometrics, Elsevier, vol. 21(3), pages 389-402, April.
    10. Kim, Minbo & CarterHill, R., 1995. "Shrinkage estimation in nonlinear regression The Box-Cox transformation," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 1-33.
    11. Härdle,Wolfgang, 1992. "Applied Nonparametric Regression," Cambridge Books, Cambridge University Press, number 9780521429504, April.
    12. Chawla, J. S., 1990. "A note on ridge regression," Statistics & Probability Letters, Elsevier, vol. 9(4), pages 343-345, April.
    13. Judge, G.G. & Bock, M.E., 1983. "Biased estimation," Handbook of Econometrics,in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 10, pages 599-649 Elsevier.
    14. Jan R. Magnus, 2002. "Estimation of the mean of a univariate normal distribution with known variance," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 225-236, June.
    15. Danilov, Dmitry & Magnus, J.R.Jan R., 2004. "On the harm that ignoring pretesting can cause," Journal of Econometrics, Elsevier, vol. 122(1), pages 27-46, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:caseps:200411. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/cahubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.