IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0405004.html
   My bibliography  Save this paper

On the Small Sample Properties of Dickey Fuller and Maximum Likelihood Unit Root Tests on Discrete-Sampled Short-Term Interest Rates

Author

Listed:
  • Paulo M. M. Rodrigues

    (Faculty of Economics; University of Algarve)

  • Antonio Rubia

    (Department of Financial Economics; University of Alicante)

Abstract

Testing for unit roots in short-term interest rates plays a key role in the empirical modelling of these series. It is widely assumed that the volatility of interest rates follows some time-varying function which is dependent of the level of the series. This may cause distortions in the performance of conventional tests for unit root nonstationarity since these are typically derived under the assumption of homoskedasticity. Given the relative unfamiliarity on the issue, we conducted an extensive Monte Carlo investigation in order to assess the performance of the DF unit root tests, and examined the effects on the limiting distributions of test procedures (t- and likelihood ratio tests) based on maximum likelihood estimation of models for short-term rates with a linear drift.

Suggested Citation

  • Paulo M. M. Rodrigues & Antonio Rubia, 2004. "On the Small Sample Properties of Dickey Fuller and Maximum Likelihood Unit Root Tests on Discrete-Sampled Short-Term Interest Rates," Econometrics 0405004, EconWPA.
  • Handle: RePEc:wpa:wuwpem:0405004
    Note: Type of Document - zip; pages: 31
    as

    Download full text from publisher

    File URL: http://econwpa.repec.org/eps/em/papers/0405/0405004.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    2. Nicolau, Jo o, 2002. "Stationary Processes That Look Like Random Walks The Bounded Random Walk Process In Discrete And Continuous Time," Econometric Theory, Cambridge University Press, vol. 18(01), pages 99-118, February.
    3. Broze, Laurence & Scaillet, Olivier & Zakoian, Jean-Michel, 1995. "Testing for continuous-time models of the short-term interest rate," Journal of Empirical Finance, Elsevier, vol. 2(3), pages 199-223, September.
    4. H. Peter Boswijk, 2000. "Testing for a Unit Root with Near-Integrated Volatility," Econometric Society World Congress 2000 Contributed Papers 1101, Econometric Society.
    5. Kim, Kiwhan & Schmidt, Peter, 1993. "Unit root tests with conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 59(3), pages 287-300, October.
    6. Shiqing Ling & W. K. Li & Michael McAleer, 2003. "Estimation and Testing for Unit Root Processes with GARCH (1, 1) Errors: Theory and Monte Carlo Evidence," Econometric Reviews, Taylor & Francis Journals, vol. 22(2), pages 179-202.
    7. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    8. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    9. David A. Chapman & Neil D. Pearson, 2000. "Is the Short Rate Drift Actually Nonlinear?," Journal of Finance, American Finance Association, vol. 55(1), pages 355-388, February.
    10. Hylleberg, Svend & Mizon, Grayham E., 1989. "A note on the distribution of the least squares estimator of a random walk with drift," Economics Letters, Elsevier, vol. 29(3), pages 225-230.
    11. Brenner, Robin J. & Harjes, Richard H. & Kroner, Kenneth F., 1996. "Another Look at Models of the Short-Term Interest Rate," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(01), pages 85-107, March.
    12. Luger, Richard, 2003. "Exact non-parametric tests for a random walk with unknown drift under conditional heteroscedasticity," Journal of Econometrics, Elsevier, vol. 115(2), pages 259-276, August.
    13. Li, W K & Ling, Shiqing & McAleer, Michael, 2002. " Recent Theoretical Results for Time Series Models with GARCH Errors," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 245-269, July.
    14. Phillips, P.C.B., 1990. "Time Series Regression With a Unit Root and Infinite-Variance Errors," Econometric Theory, Cambridge University Press, vol. 6(01), pages 44-62, March.
    15. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    16. Clifford A. Ball & Walter N. Torous, 1999. "The Stochastic Volatility of Short-Term Interest Rates: Some International Evidence," Journal of Finance, American Finance Association, vol. 54(6), pages 2339-2359, December.
    17. Park, Joon Y., 2002. "Nonstationary nonlinear heteroskedasticity," Journal of Econometrics, Elsevier, vol. 110(2), pages 383-415, October.
    18. Chan, K C, et al, 1992. " An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    19. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    20. Breitung, Jorg & Taylor, A. M. Robert, 2003. "Corrigendum to "Nonparametric tests for unit roots and cointegration" [J. Econom. 108 (2002) 343-363]," Journal of Econometrics, Elsevier, vol. 117(2), pages 401-404, December.
    21. Bali, Turan G., 2003. "Modeling the stochastic behavior of short-term interest rates: Pricing implications for discount bonds," Journal of Banking & Finance, Elsevier, vol. 27(2), pages 201-228, February.
    22. Haldrup, Niels & Hylleberg, Svend, 1995. "A note on the distribution of the least squares estimator of a random walk with drift: Some analytical evidence," Economics Letters, Elsevier, vol. 48(3-4), pages 221-228, June.
    23. Sung Ahn & Stergios Fotopoulos & Lijian He, 2001. "Unit Root Tests With Infinite Variance Errors," Econometric Reviews, Taylor & Francis Journals, vol. 20(4), pages 461-483.
    24. Hansen, Bruce E, 1995. "Regression with Nonstationary Volatility," Econometrica, Econometric Society, vol. 63(5), pages 1113-1132, September.
    25. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    26. Chan, Ngai Hang & Tran, Lanh Tat, 1989. "On the First-Order Autoregressive Process with Infinite Variance," Econometric Theory, Cambridge University Press, vol. 5(03), pages 354-362, December.
    27. Hansen, Bruce E., 1992. "Heteroskedastic cointegration," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 139-158.
    28. Seo, Byeongseon, 1999. "Distribution theory for unit root tests with conditional heteroskedasticity1," Journal of Econometrics, Elsevier, vol. 91(1), pages 113-144, July.
    29. Rogers, L. C. G. & Stummer, Wolfgang, 2000. "Consistent fitting of one-factor models to interest rate data," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 45-63, August.
    30. Yacine Ait-Sahalia, 1998. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-Form Approach," NBER Technical Working Papers 0222, National Bureau of Economic Research, Inc.
    31. Breitung, Jorg, 2002. "Nonparametric tests for unit roots and cointegration," Journal of Econometrics, Elsevier, vol. 108(2), pages 343-363, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Unit root; interest rates; CKLS model.;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0405004. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: http://econwpa.repec.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.