IDEAS home Printed from https://ideas.repec.org/p/uwo/uwowop/20044.html
   My bibliography  Save this paper

The Dynamic Competitiveness of U.S. Agricultural and Forest Carbon Sequestration

Author

Listed:

Abstract

Global society is moving towards action to reduce anthropogenic greenhouse gas emissions. This can be expensive and socially disruptive in countries like the United States where the vast majority of emissions arise from electrical energy generation and petroleum usage. Agricultural and forest carbon sequestration along with development of other greenhouse gas offsets may help hold costs and disruption down. However sequestration exhibits saturation and non permanence that may influence this role. We examine the dynamic role that the agricultural and forest sectors can play in emissions offsets and mitigation. A 100 year modeling analysis, depicting U.S. agricultural and forest sectoral activities is applied to simulate agricultural and forestry potential mitigation response. The results reveal that agriculture and forestry can play an important role principally through cropland soil sequestration, afforestation and biofuel provision. However the importance of these strategies varies with price and time. At low carbon prices and in the near term agricultural soils are most important in the longer term and at high prices powerplant feedstock biofuels dominate. Ignoring saturation leads to an overstatement of the potential importance of sequestration strategies. Nevertheless the results show that the agricultural and forest sectors may serve as an important bridge to the future helping to hold costs down until energy emissions related technology develops.

Suggested Citation

  • Heng-Chi Lee & Bruce A. McCarl, 2004. "The Dynamic Competitiveness of U.S. Agricultural and Forest Carbon Sequestration," University of Western Ontario, Departmental Research Report Series 20044, University of Western Ontario, Department of Economics, revised Nov 2003.
  • Handle: RePEc:uwo:uwowop:20044
    as

    Download full text from publisher

    File URL: https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=1233&context=economicsresrpt
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alig, Ralph J. & Adams, Darius M. & McCarl, Bruce A., 1998. "Impacts of Incorporating Land Exchanges Between Forestry and Agriculture in Sector Models," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 30(2), pages 389-401, December.
    2. Darius M. Adams & Ralph J. Alig & DBruce A. McCarl & John M. Callaway & Steven M. Winnett, 1999. "Minimum Cost Strategies for Sequestering Carbon in Forests," Land Economics, University of Wisconsin Press, vol. 75(3), pages 360-374.
    3. Ian Noble & R. J. Scholes, 2001. "Sinks and the Kyoto Protocol," Climate Policy, Taylor & Francis Journals, vol. 1(1), pages 5-25, March.
    4. Schneider, Uwe A. & Kumar, Pushpam, 2008. "Greenhouse Gas Mitigation through Agriculture," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 23(1), pages 1-5.
    5. McCarl, Bruce A. & Schneider, Uwe A., 1999. "Curbing Greenhouse Gases: Agriculture's Role," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 14(1), pages 1-4.
    6. Antle, John M. & Capalbo, Susan Marie & Mooney, Sian & Elliott, Edward T. & Paustian, Keith H., 2001. "Economic Analysis Of Agricultural Soil Carbon Sequestration: An Integrated Assessment Approach," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(2), pages 1-24, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sumeet Gulati & James Vercammen, 2005. "The Optimal Length of an Agricultural Carbon Contract," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 53(4), pages 359-373, December.
    2. Gulati, Sumeet & Vercammen, James, 2005. "The Optimal Length of an Agricultural Carbon Contract," Working Papers 37027, University of Victoria, Resource Economics and Policy.
    3. Vass, Miriam Münnich & Elofsson, Katarina, 2016. "Is forest carbon sequestration at the expense of bioenergy and forest products cost-efficient in EU climate policy to 2050?," Journal of Forest Economics, Elsevier, vol. 24(C), pages 82-105.
    4. Sung Ju Cho & Bruce McCarl, 2021. "Major United States Land Use as Influenced by an Altering Climate: A Spatial Econometric Approach," Land, MDPI, vol. 10(5), pages 1-16, May.
    5. Szulczyk, Kenneth R. & McCarl, Bruce A. & Cornforth, Gerald, 2010. "Market penetration of ethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 394-403, January.
    6. Timothy Capon & Michael Harris & Andrew Reeson, 2013. "The Design of Markets for Soil Carbon Sequestration," Economic Papers, The Economic Society of Australia, vol. 32(2), pages 161-173, June.
    7. Edwin Van Der Werf & Sonja Peterson, 2009. "Modeling linkages between climate policy and land use: an overview," Agricultural Economics, International Association of Agricultural Economists, vol. 40(5), pages 507-517, September.
    8. Munnich Vass, Miriam & Elofsson, Katarina, 2013. "Is forest sequestration at the expense of bioenergy and forest products cost-effective in EU climate policy to 2050?," Working Paper Series 2013:9, Swedish University of Agricultural Sciences, Department Economics.
    9. Yi-Bin Chiu, 2012. "Deforestation and the Environmental Kuznets Curve in Developing Countries: A Panel Smooth Transition Regression Approach," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 60(2), pages 177-194, June.
    10. Galinato, Gregmar I. & Olanie, Aaron & Uchida, Shinsuke & Yoder, Jonathan K., 2011. "Long-term versus temporary certified emission reductions in forest carbon sequestration programs," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(4), pages 1-23.
    11. Szulczyk, Kenneth R. & McCarl, Bruce A., 2010. "Market penetration of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2426-2433, October.
    12. Uwe A. Schneider & Michael Obersteiner & Erwin Schmid & Bruce A. McCarl, 2007. "Agricultural adaptation to climate policies under technical change," Working Papers FNU-133, Research unit Sustainability and Global Change, Hamburg University, revised Jan 2008.
    13. Chin-Hsien Yu & Bruce A. McCarl, 2018. "The Water Implications of Greenhouse Gas Mitigation: Effects on Land Use, Land Use Change, and Forestry," Sustainability, MDPI, vol. 10(7), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uwe Schneider & Bruce McCarl, 2003. "Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(4), pages 291-312, April.
    2. Jianhong Mu & Anne Wein & Bruce McCarl, 2015. "Land use and management change under climate change adaptation and mitigation strategies: a U.S. case study," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1041-1054, October.
    3. David Walker, 2014. "The Economic Potential for Forest-Based Carbon Sequestration under Different Emissions Targets and Accounting Schemes," Working Papers 2014.02, School of Economics, La Trobe University.
    4. Latta, Gregory & Adams, Darius M. & Alig, Ralph J. & White, Eric, 2011. "Simulated effects of mandatory versus voluntary participation in private forest carbon offset markets in the United States," Journal of Forest Economics, Elsevier, vol. 17(2), pages 127-141, April.
    5. Uwe A. Schneider & Michael Obersteiner & Erwin Schmid & Bruce A. McCarl, 2007. "Agricultural adaptation to climate policies under technical change," Working Papers FNU-133, Research unit Sustainability and Global Change, Hamburg University, revised Jan 2008.
    6. de Cara, Stephane & Rozakis, Stelios, 2004. "Carbon sequestration through the planting of multi-annual energy crops: A dynamic and spatial assessment," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 5(1), pages 1-17, January.
    7. Schneider, Uwe A. & McCarl, Bruce A., 2005. "Implications of a Carbon-Based Energy Tax for U.S. Agriculture," Agricultural and Resource Economics Review, Cambridge University Press, vol. 34(2), pages 265-279, October.
    8. HUBERT Marie-Hélène & MOREAUX Michel, 2007. "The challenge of meeting the future food needs," LERNA Working Papers 07.17.238, LERNA, University of Toulouse.
    9. Uwe A. Schneider & Bruce A. McCarl, 2003. "Measuring Abatement Potentials When Multiple Change Is Present: The Case Of Greenhouse Gas Mitigation In U.S. Agriculture And Forestry," Working Papers FNU-23, Research unit Sustainability and Global Change, Hamburg University, revised Apr 2002.
    10. Sihvonen, Matti & Pihlainen, Sampo & Lai, Tin-Yu & Salo, Tapio & Hyytiäinen, Kari, 2021. "Crop production, water pollution, or climate change mitigation—Which drives socially optimal fertilization management most?," Agricultural Systems, Elsevier, vol. 186(C).
    11. Dhazn Gillig & Bruce McCarl & Ronald Sands, 2004. "Integrating agricultural and forestry GHG mitigation response into general economy frameworks: Developing a family of response functions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 9(3), pages 241-259, July.
    12. Ruben N. Lubowski & Andrew J. Plantinga & Robert N. Stavins, 2008. "What Drives Land-Use Change in the United States? A National Analysis of Landowner Decisions," Land Economics, University of Wisconsin Press, vol. 84(4), pages 529-550.
    13. Odera, Michael M. & Kimani, Stephen K., 2004. "Payments for Environmental Services under Emerging International Agreements: A Basis for Inclusion of Agricultural Soil Carbon Sinks," 2004 Inaugural Symposium, December 6-8, 2004, Nairobi, Kenya 9539, African Association of Agricultural Economists (AAAE).
    14. Hediger, Werner, 2009. "The non-permanence of optimal soil carbon sequestration," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 51057, Agricultural Economics Society.
    15. Elbakidze, Levan & McCarl, Bruce A., 2007. "Sequestration offsets versus direct emission reductions: Consideration of environmental co-effects," Ecological Economics, Elsevier, vol. 60(3), pages 564-571, January.
    16. Schneider, Uwe A. & McCarl, Bruce A. & Schmid, Erwin, 2007. "Agricultural sector analysis on greenhouse gas mitigation in US agriculture and forestry," Agricultural Systems, Elsevier, vol. 94(2), pages 128-140, May.
    17. Hartmann, Michael, 2005. "Agriculture's Contribution to Swiss Climate Policy: Results of an Economic Analysis," Agrarwirtschaft und Agrarsoziologie\ Economie et Sociologie Rurales, Swiss Society for Agricultural Economics and Rural Sociology, vol. 2005(1), pages 1-16.
    18. Stavins, Robert & Plantinga, Andrew & Lubowski, Ruben, 2005. "Land-Use Change and Carbon Sinks," RFF Working Paper Series dp-05-04, Resources for the Future.
    19. Ervola, Asta & Lankoski, Jussi E. & Ollikainen, Markku, 2010. "Mitigation options and policies in agricultural sector: a theoretical model and application," 120th Seminar, September 2-4, 2010, Chania, Crete 109320, European Association of Agricultural Economists.
    20. Kragt, Marit E. & Pannell, David J. & Robertson, Michael J. & Thamo, Tas, 2012. "Assessing costs of soil carbon sequestration by crop-livestock farmers in Western Australia," Agricultural Systems, Elsevier, vol. 112(C), pages 27-37.

    More about this item

    Keywords

    climate change mitigation; saturation; carbon sequestration;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uwo:uwowop:20044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://economics.uwo.ca/research/research_papers/department_working_papers.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.