IDEAS home Printed from https://ideas.repec.org/p/unm/umamet/2012003.html
   My bibliography  Save this paper

On extensions of the core and the anticore of transferable utility games

Author

Listed:
  • Derks, J.

    (Externe publicaties SBE)

  • Peters, H.J.M.

    (Quantitative Economics)

  • Sudhölter, P.

Abstract

We consider several related set extensions of the core and the anticore of games with transferable utility. An efficient allocation is undominated if it cannot be improved, in a specific way, by sidepayments changing the allocation or the game. The set of all such allocations is called the undominated set, and we show that it consists of finitely many polytopes with a core-like structure. One of these polytopes is the L1-center, consisting of all efficient allocations that minimize the sum of the absolute values of the excesses. The excess Pareto optimal set contains the allocations that are Pareto optimal in the set obtained by ordering the sums of the absolute values of the excesses of coalitions and the absolute values of the excesses of their complements. The L1-center is contained in the excess Pareto optimal set, which in turn is contained in the undominated set. For three-person games all these sets coincide. These three sets also coincide with the core for balanced games and with the anticore for antibalanced games. We study properties of these sets and provide characterizations in terms of balanced collections of coalitions. We also propose a single-valued selection from the excess Pareto optimal set, the min-prenucleolus, which is defined as the prenucleolus of the minimum of a game and its dual.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Derks, J. & Peters, H.J.M. & Sudhölter, P., 2012. "On extensions of the core and the anticore of transferable utility games," Research Memorandum 003, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  • Handle: RePEc:unm:umamet:2012003
    DOI: 10.26481/umamet.2012003
    as

    Download full text from publisher

    File URL: https://cris.maastrichtuniversity.nl/ws/files/1094121/guid-a7c3ed7a-5fa6-4b3b-b2ab-8dcf70108358-ASSET1.0.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26481/umamet.2012003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bossert, Walter & Derks, Jean & Peters, Hans, 2005. "Efficiency in uncertain cooperative games," Mathematical Social Sciences, Elsevier, vol. 50(1), pages 12-23, July.
    2. Stéphane Gonzalez & Michel Grabisch, 2015. "Preserving coalitional rationality for non-balanced games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 733-760, August.
    3. Peleg, B, 1986. "On the Reduced Game Property and Its Converse," International Journal of Game Theory, Springer;Game Theory Society, vol. 15(3), pages 187-200.
    4. Guni Orshan & Peter Sudhölter, 2010. "The positive core of a cooperative game," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 113-136, March.
    5. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Derks, Jean & Peters, Hans, 1998. "Orderings, excess functions, and the nucleolus," Mathematical Social Sciences, Elsevier, vol. 36(2), pages 175-182, September.
    7. Richard Spinetto, 1974. "The Geometry of Solution Concepts for N-Person Cooperative Games," Management Science, INFORMS, vol. 20(9), pages 1292-1299, May.
    8. M. Maschler & B. Peleg & L. S. Shapley, 1979. "Geometric Properties of the Kernel, Nucleolus, and Related Solution Concepts," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 303-338, November.
    9. Camelia Bejan & Juan Gómez, 2009. "Core extensions for non-balanced TU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 3-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karpov, Alexander, 2014. "Equal weights coauthorship sharing and the Shapley value are equivalent," Journal of Informetrics, Elsevier, vol. 8(1), pages 71-76.
    2. Fatma Aslan & Papatya Duman & Walter Trockel, 2019. "Duality for General TU-games Redefined," Working Papers CIE 121, Paderborn University, CIE Center for International Economics.
    3. Michel Grabisch & Peter Sudhölter, 2016. "Characterizations of solutions for games with precedence constraints," PSE-Ecole d'économie de Paris (Postprint) hal-01297600, HAL.
    4. Michel Grabisch & Peter Sudhölter, 2014. "The positive core for games with precedence constraints," Documents de travail du Centre d'Economie de la Sorbonne 14036, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    5. Fatma Aslan & Papatya Duman & Walter Trockel, 2020. "Non-cohesive TU-games: Efficiency and Duality," Working Papers CIE 138, Paderborn University, CIE Center for International Economics.
    6. Fatma Aslan & Papatya Duman & Walter Trockel, 2020. "Non-cohesive TU-games: Duality and P-core," Working Papers CIE 136, Paderborn University, CIE Center for International Economics.
    7. Chen, Haoxun, 2017. "Undominated nonnegative excesses and core extensions of transferable utility games," European Journal of Operational Research, Elsevier, vol. 261(1), pages 222-233.
    8. Michel Grabisch & Hervé Moulin & José Manuel Zarzuelo, 2024. "Professor Peter Sudhölter (1957–2024)," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(2), pages 289-294, June.
    9. Moshe Babaioff & Uriel Feige, 2019. "A New Approach to Fair Distribution of Welfare," Papers 1909.11346, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Haoxun, 2017. "Undominated nonnegative excesses and core extensions of transferable utility games," European Journal of Operational Research, Elsevier, vol. 261(1), pages 222-233.
    2. Stéphane Gonzalez & Aymeric Lardon, 2018. "Optimal deterrence of cooperation," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(1), pages 207-227, March.
    3. Yang, Yi-You, 2012. "On the accessibility of core-extensions," Games and Economic Behavior, Elsevier, vol. 74(2), pages 687-698.
    4. Katsev, Ilya & Yanovskaya, Elena, 2013. "The prenucleolus for games with restricted cooperation," Mathematical Social Sciences, Elsevier, vol. 66(1), pages 56-65.
    5. Camelia Bejan & Juan Gómez, 2012. "Axiomatizing core extensions," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 885-898, November.
    6. Toru Hokari & Yukihiko Funaki & Peter Sudhölter, 2020. "Consistency, anonymity, and the core on the domain of convex games," Review of Economic Design, Springer;Society for Economic Design, vol. 24(3), pages 187-197, December.
    7. Guni Orshan & Peter Sudhölter, 2012. "Nonsymmetric variants of the prekernel and the prenucleolus," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 809-828, November.
    8. Shin Kishimoto & Naoki Watanabe, 2014. "The Kernel of a Patent Licensing Game," Working Papers e075, Tokyo Center for Economic Research.
    9. H. Andrew Michener & Greg B. Macheel & Charles G. Depies & Chris A. Bowen, 1986. "Mollifier Representation in Non-Constant-Sum Games," Journal of Conflict Resolution, Peace Science Society (International), vol. 30(2), pages 361-382, June.
    10. Núñez, Marina & Rafels, Carles, 2009. "A glove-market partitioned matrix related to the assignment game," Games and Economic Behavior, Elsevier, vol. 67(2), pages 598-610, November.
    11. Tamás Solymosi, 2019. "Weighted nucleoli and dually essential coalitions (extended version)," CERS-IE WORKING PAPERS 1914, Institute of Economics, Centre for Economic and Regional Studies.
    12. Francesc Llerena & Marina Núñez & Carles Rafels, 2015. "An axiomatization of the nucleolus of assignment markets," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(1), pages 1-15, February.
    13. repec:ehu:ikerla:34464 is not listed on IDEAS
    14. Potters, Jos & Sudholter, Peter, 1999. "Airport problems and consistent allocation rules," Mathematical Social Sciences, Elsevier, vol. 38(1), pages 83-102, July.
    15. Anna Khmelnitskaya & Peter Sudhölter, 2013. "The prenucleolus and the prekernel for games with communication structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(2), pages 285-299, October.
    16. Tamás Solymosi, 2019. "Weighted nucleoli and dually essential coalitions," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(4), pages 1087-1109, December.
    17. Rene van den Brink & Ilya Katsev & Gerard van der Laan, 2023. "Properties of Solutions for Games on Union-Closed Systems," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    18. Francesc Llerena (Universitat Rovira i Virgili - CREIP) & Marina Nunez (Universitat de Barcelona) & Carles Rafels (Universitat de Barcelona), 2012. "An axiomatization of the nucleolus of the assignment game," Working Papers in Economics 286, Universitat de Barcelona. Espai de Recerca en Economia.
    19. Yan-An Hwang, 2013. "On the core: complement-reduced game and max-reduced game," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 339-355, May.
    20. John Kleppe & Hans Reijnierse & Peter Sudhölter, 2016. "Axiomatizations of symmetrically weighted solutions," Annals of Operations Research, Springer, vol. 243(1), pages 37-53, August.
    21. Elena Iñarra & Roberto Serrano & Ken-Ichi Shimomura, 2020. "The Nucleolus, the Kernel, and the Bargaining Set: An Update," Revue économique, Presses de Sciences-Po, vol. 71(2), pages 225-266.

    More about this item

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unm:umamet:2012003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Willems or Leonne Portz (email available below). General contact details of provider: https://edirc.repec.org/data/meteonl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.