IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1909.11346.html
   My bibliography  Save this paper

A New Approach to Fair Distribution of Welfare

Author

Listed:
  • Moshe Babaioff
  • Uriel Feige

Abstract

We consider transferable-utility profit-sharing games that arise from settings in which agents need to jointly choose one of several alternatives, and may use transfers to redistribute the welfare generated by the chosen alternative. One such setting is the Shared-Rental problem, in which students jointly rent an apartment and need to decide which bedroom to allocate to each student, depending on the student's preferences. Many solution concepts have been proposed for such settings, ranging from mechanisms without transfers, such as Random Priority and the Eating mechanism, to mechanisms with transfers, such as envy free solutions, the Shapley value, and the Kalai-Smorodinsky bargaining solution. We seek a solution concept that satisfies three natural properties, concerning efficiency, fairness and decomposition. We observe that every solution concept known (to us) fails to satisfy at least one of the three properties. We present a new solution concept, designed so as to satisfy the three properties. A certain submodularity condition (which holds in interesting special cases such as the Shared-Rental setting) implies both existence and uniqueness of our solution concept.

Suggested Citation

  • Moshe Babaioff & Uriel Feige, 2019. "A New Approach to Fair Distribution of Welfare," Papers 1909.11346, arXiv.org.
  • Handle: RePEc:arx:papers:1909.11346
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1909.11346
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Lloyd S. Shapley, 1967. "On balanced sets and cores," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 14(4), pages 453-460.
    2. Monderer, Dov & Samet, Dov & Shapley, Lloyd S, 1992. "Weighted Values and the Core," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(1), pages 27-39.
    3. Moulin, Herve, 1985. "Egalitarianism and Utilitarianism in Quasi-linear Bargaining," Econometrica, Econometric Society, vol. 53(1), pages 49-67, January.
    4. Dutta, Bhaskar & Ray, Debraj, 1989. "A Concept of Egalitarianism under Participation Constraints," Econometrica, Econometric Society, vol. 57(3), pages 615-635, May.
    5. Jean Derks & Hans Peters & Peter Sudhölter, 2014. "On extensions of the core and the anticore of transferable utility games," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(1), pages 37-63, February.
    6. Kalai, Ehud & Smorodinsky, Meir, 1975. "Other Solutions to Nash's Bargaining Problem," Econometrica, Econometric Society, vol. 43(3), pages 513-518, May.
    7. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," CORE Discussion Papers RP 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Maschler, M & Potters, J A M & Tijs, S H, 1992. "The General Nucleolus and the Reduced Game Property," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(1), pages 85-106.
    9. Xiaotie Deng & Christos H. Papadimitriou, 1994. "On the Complexity of Cooperative Solution Concepts," Mathematics of Operations Research, INFORMS, vol. 19(2), pages 257-266, May.
    10. Lehmann, Benny & Lehmann, Daniel & Nisan, Noam, 2006. "Combinatorial auctions with decreasing marginal utilities," Games and Economic Behavior, Elsevier, vol. 55(2), pages 270-296, May.
    11. Maschler, M. & Potters, J.A.M. & Tijs, S.H., 1992. "The general nucleolus and the reduced game property," Other publications TiSEM ab187dab-1b5b-40c3-a673-8, Tilburg University, School of Economics and Management.
    12. Bogomolnaia, Anna & Moulin, Herve, 2001. "A New Solution to the Random Assignment Problem," Journal of Economic Theory, Elsevier, vol. 100(2), pages 295-328, October.
    13. Moulin, Herve, 1992. "An Application of the Shapley Value to Fair Division with Money," Econometrica, Econometric Society, vol. 60(6), pages 1331-1349, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Calleja & Francesc Llerena & Peter Sudhölter, 2020. "Monotonicity and Weighted Prenucleoli: A Characterization Without Consistency," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 1056-1068, August.
    2. Cubukcu, K. Mert, 2020. "The problem of fair division of surplus development rights in redevelopment of urban areas: Can the Shapley value help?," Land Use Policy, Elsevier, vol. 91(C).
    3. Slikker, M. & Norde, H.W., 2008. "The Monoclus of a Coalitional Game," Other publications TiSEM 8b2bae34-674a-4632-a64e-9, Tilburg University, School of Economics and Management.
    4. Slikker, Marco & Norde, Henk, 2011. "The monoclus of a coalitional game," Games and Economic Behavior, Elsevier, vol. 71(2), pages 420-435, March.
    5. Michael Maschler, 2004. "Encouraging a Coalition Formation," Discussion Paper Series dp392, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    6. Rodica Brânzei & Tamás Solymosi & Stef Tijs, 2005. "Strongly essential coalitions and the nucleolus of peer group games," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(3), pages 447-460, September.
    7. Tamás Solymosi, 2019. "Weighted nucleoli and dually essential coalitions (extended version)," CERS-IE WORKING PAPERS 1914, Institute of Economics, Centre for Economic and Regional Studies.
    8. Márton Benedek & Jörg Fliege & Tri-Dung Nguyen, 2020. "Finding and verifying the nucleolus of cooperative games," CERS-IE WORKING PAPERS 2021, Institute of Economics, Centre for Economic and Regional Studies.
    9. Quant, Marieke & Borm, Peter & Hendrickx, Ruud & Zwikker, Peter, 2006. "Compromise solutions based on bankruptcy," Mathematical Social Sciences, Elsevier, vol. 51(3), pages 247-256, May.
    10. Tamás Solymosi, 2019. "Weighted nucleoli and dually essential coalitions," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(4), pages 1087-1109, December.
    11. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, September.
    12. Arin Aguirre, Francisco Javier, 2003. "Egalitarian distributions in coalitional models: The Lorenz criterion," IKERLANAK 2003-02, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    13. D. Granot & H. Hamers & J. Kuipers & M. Maschler, 2004. "Chinese Postman Games on a Class of Eulerian Graphs," Discussion Paper Series dp366, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    14. Suijs, J.P.M., 1996. "A Nucleolus for Stochastic Cooperative Games," Other publications TiSEM 44b162e7-85d3-4884-9261-0, Tilburg University, School of Economics and Management.
    15. Suijs, J.P.M., 1998. "Cooperative decision making in a stochastic environment," Other publications TiSEM a84d779a-d5a9-48e9-bfe7-4, Tilburg University, School of Economics and Management.
    16. Eijffinger, S.C.W. & Gruijters, A.P.D., 1989. "On the effectiveness of daily interventions by the Deutsche Bundesbank and the federal reserve system in the U.S. Dollar-Deutsche Mark exchange market," Other publications TiSEM cd65eff1-5f9e-4262-8f38-b, Tilburg University, School of Economics and Management.
    17. Thomson, William, 2003. "Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey," Mathematical Social Sciences, Elsevier, vol. 45(3), pages 249-297, July.
    18. Peleg, Bezalel & Tijs, Stef, 1996. "The Consistency Principle for Games in Strategic Forms," International Journal of Game Theory, Springer;Game Theory Society, vol. 25(1), pages 13-34.
    19. Nishizaki, Ichiro & Sakawa, Masatoshi, 2001. "On computational methods for solutions of multiobjective linear production programming games," European Journal of Operational Research, Elsevier, vol. 129(2), pages 386-413, March.
    20. Peleg, B. & Tijs, S.H., 1993. "The consistency principle for games in strategic form," Other publications TiSEM 896509c3-ef2c-446d-811f-e, Tilburg University, School of Economics and Management.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1909.11346. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.