IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

How to evaluate an Early Warning System? Towards a United Statistical Framework for Assessing Financial Crises Forecasting Methods

  • Candelon Bertrand
  • Dumitrescu Elena-Ivona
  • Hurlin Christophe


This paper proposes a new statistical framework originating from the traditional credit-scoring literature, to evaluate currency crises Early Warning Systems (EWS). Based on an assessment of the predictive power of panel logit and Markov frameworks, the panel logit model is outperforming the Markov switching specitcations. Furthermore, the introduction of forward-looking variables clearly improves the forecasting properties of the EWS. This improvement confirms the adequacy of the second generation crisis models in explaining the occurrence of crises.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Our checks indicate that this address may not be valid because: 401 Unauthorized. If this is indeed the case, please notify (Charles Bollen)

Download Restriction: no

Paper provided by Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR) in its series Research Memorandum with number 046.

in new window

Date of creation: 2010
Date of revision:
Handle: RePEc:unm:umamet:2010046
Contact details of provider: Postal: P.O. Box 616, 6200 MD Maastricht
Phone: +31 (0)43 38 83 830
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Andrew Berg & Rebecca N. Coke, 2004. "Autocorrelation-Corrected Standard Errors in Panel Probits: An Application to Currency Crisis Prediction," IMF Working Papers 04/39, International Monetary Fund.
  2. George Kapetanios, 2003. "Determining the Poolability of Individual Series in Panel Datasets," Working Papers 499, Queen Mary University of London, School of Economics and Finance.
  3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  4. Marcel Fratzscher, 2003. "On currency crises and contagion," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 8(2), pages 109-129.
  5. Kim, C-J., 1991. "Dynamic Linear Models with Markov-Switching," Papers 91-8, York (Canada) - Department of Economics.
  6. Arturo Estrella & Mary R. Trubin, 2006. "The yield curve as a leading indicator: some practical issues," Current Issues in Economics and Finance, Federal Reserve Bank of New York, vol. 12(Jul).
  7. van den Berg, Jeroen & Candelon, Bertrand & Urbain, Jean-Pierre, 2008. "A cautious note on the use of panel models to predict financial crises," Economics Letters, Elsevier, vol. 101(1), pages 80-83, October.
  8. Maria Soledad Martinez Peria, 2002. "A regime-switching approach to the study of speculative attacks: A focus on EMS crises," Empirical Economics, Springer, vol. 27(2), pages 299-334.
  9. Maddala, G S & Wu, Shaowen, 1999. " A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 631-52, Special I.
  10. Todd E. Clark & Michael W. McCracken, 1999. "Tests of equal forecast accuracy and encompassing for nested models," Research Working Paper 99-11, Federal Reserve Bank of Kansas City.
  11. Estrella, Arturo & Hardouvelis, Gikas A, 1991. " The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-76, June.
  12. Berg, Andrew & Pattillo, Catherine, 1999. "Predicting currency crises:: The indicators approach and an alternative," Journal of International Money and Finance, Elsevier, vol. 18(4), pages 561-586, August.
  13. Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
  14. Fuertes, Ana-Maria & Kalotychou, Elena, 2007. "Optimal design of early warning systems for sovereign debt crises," International Journal of Forecasting, Elsevier, vol. 23(1), pages 85-100.
  15. Kaminsky, Graciela & Lizondo, Saul & Reinhart, Carmen M., 1997. "Leading indicators of currency crises," Policy Research Working Paper Series 1852, The World Bank.
  16. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
  17. Hamilton, James D., 1988. "Rational-expectations econometric analysis of changes in regime : An investigation of the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 385-423.
  18. Don Harding & Adrian Pagan, 2006. "The Econometric Analysis of Constructed Binary Time Series," Department of Economics - Working Papers Series 963, The University of Melbourne.
  19. Kumar, Mohan & Moorthy, Uma & Perraudin, William, 2003. "Predicting emerging market currency crashes," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 427-454, September.
  20. Arturo Estrella & Frederic S. Mishkin, 1996. "The yield curve as a predictor of U.S. recessions," Current Issues in Economics and Finance, Federal Reserve Bank of New York, vol. 2(Jun).
  21. Abdul Abiad, 2003. "Early Warning Systems: A Survey and a Regime-Switching Approach," IMF Working Papers 03/32, International Monetary Fund.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:unm:umamet:2010046. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Charles Bollen)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.