IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Simple and Trustworthy Cluster-Robust GMM Inference

Listed author(s):
  • Jungbin Hwang

    (University of Connecticut)

This paper develops a new asymptotic theory for two-step GMM estimation and inference in the presence of clustered dependence. The key feature of alternative asymptotics is the number of clusters G is regarded as small or xed when the sample size increases. Under the small-G asymptotics, this paper shows the centered two-step GMM estimator and the two continuously-updating GMM estimators we consider have the same asymptotic mixed normal distribution. In addition, the J statistic, the trinity of two-step GMM statistics (QLR, LM and Wald), and the t statistic are all asymptotically pivotal, and each can be modi ed to have an asymptotic standard F distribution or t distribution. We suggest a nite sample variance correction to further improve the accuracy of the F and t approximations. Our proposed asymptotic F and t tests are very appealing to practitioners because our test statistics are simple modi cations of the usual test statistics, and critical values are readily available from standard statistical tables. A Monte Carlo study shows that our proposed tests are more accurate than the conventional inferences under the large-G asymptotics.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Full text
Download Restriction: no

Paper provided by University of Connecticut, Department of Economics in its series Working papers with number 2017-19.

in new window

Length: 54 pages
Date of creation: Aug 2017
Handle: RePEc:uct:uconnp:2017-19
Contact details of provider: Postal:
University of Connecticut 365 Fairfield Way, Unit 1063 Storrs, CT 06269-1063

Phone: (860) 486-4889
Fax: (860) 486-4463
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:uct:uconnp:2017-19. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark McConnel)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.