IDEAS home Printed from https://ideas.repec.org/p/tow/wpaper/2020-05.html
   My bibliography  Save this paper

The Nordhaus Test with Many Zeros

Author

Listed:
  • Kajal Lahiri

    (Department of Economics, University at Albany, State University of New York)

  • Yongchen Zhao

    (Department of Economics, Towson University)

Abstract

We reformulate the Nordhaus test as a friction model where the large number of zero revisions are treated as censored, i.e., unknown values inside a small region of "imperceptibility." Using Blue Chip individual forecasts of U.S. real GDP growth, inflation, and unemployment over 1985-2020, we find pervasive over- reaction to news at most of the monthly forecast horizons from 24 to 1, but the degree of inefficiency is very small. The updaters, i.e., those who make non-zero revisions, are not found to perform better than their "inattentive" peers do.

Suggested Citation

  • Kajal Lahiri & Yongchen Zhao, 2020. "The Nordhaus Test with Many Zeros," Working Papers 2020-05, Towson University, Department of Economics, revised Jun 2020.
  • Handle: RePEc:tow:wpaper:2020-05
    as

    Download full text from publisher

    File URL: http://webapps.towson.edu/cbe/economics/workingpapers/2020-05.pdf
    File Function: First version, 2020
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pedro Bordalo & Nicola Gennaioli & Yueran Ma & Andrei Shleifer, 2020. "Overreaction in Macroeconomic Expectations," American Economic Review, American Economic Association, vol. 110(9), pages 2748-2782, September.
    2. Damjan Pfajfar & Emiliano Santoro, 2013. "News on Inflation and the Epidemiology of Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(6), pages 1045-1067, September.
    3. Dräger, Lena & Lamla, Michael J., 2012. "Updating inflation expectations: Evidence from micro-data," Economics Letters, Elsevier, vol. 117(3), pages 807-810.
    4. Isiklar, Gultekin, 2005. "On aggregation bias in fixed-event forecast efficiency tests," Economics Letters, Elsevier, vol. 89(3), pages 312-316, December.
    5. Dovern, Jonas, 2013. "When are GDP forecasts updated? Evidence from a large international panel," Economics Letters, Elsevier, vol. 120(3), pages 521-524.
    6. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," American Economic Review, American Economic Association, vol. 105(8), pages 2644-2678, August.
    7. Nordhaus, William D, 1987. "Forecasting Efficiency: Concepts and Applications," The Review of Economics and Statistics, MIT Press, vol. 69(4), pages 667-674, November.
    8. Zhao, Yongchen, 2019. "Updates to household inflation expectations: Signal or noise?," Economics Letters, Elsevier, vol. 181(C), pages 95-98.
    9. Raffaella Giacomini & Vasiliki Skreta & Javier Turen, 2020. "Heterogeneity, Inattention, and Bayesian Updates," American Economic Journal: Macroeconomics, American Economic Association, vol. 12(1), pages 282-309, January.
    10. Binder, Carola, 2017. "Consumer forecast revisions: Is information really so sticky?," Economics Letters, Elsevier, vol. 161(C), pages 112-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. An, Zidong & Liu, Dingqian & Wu, Yuzheng, 2021. "Expectation formation following pandemic events," Economics Letters, Elsevier, vol. 200(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yongchen, 2019. "Updates to household inflation expectations: Signal or noise?," Economics Letters, Elsevier, vol. 181(C), pages 95-98.
    2. An, Zidong & Liu, Dingqian & Wu, Yuzheng, 2021. "Expectation formation following pandemic events," Economics Letters, Elsevier, vol. 200(C).
    3. Larsen, Vegard H. & Thorsrud, Leif Anders & Zhulanova, Julia, 2021. "News-driven inflation expectations and information rigidities," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 507-520.
    4. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    5. Berge, Travis J., 2018. "Understanding survey-based inflation expectations," International Journal of Forecasting, Elsevier, vol. 34(4), pages 788-801.
    6. Lena Dräger & Michael J. Lamla, 2017. "Imperfect Information and Consumer Inflation Expectations: Evidence from Microdata," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(6), pages 933-968, December.
    7. Dovern, Jonas & Fritsche, Ulrich & Loungani, Prakash & Tamirisa, Natalia, 2015. "Information rigidities: Comparing average and individual forecasts for a large international panel," International Journal of Forecasting, Elsevier, vol. 31(1), pages 144-154.
    8. Natsuki Arai, 2016. "Evaluating the Efficiency of the FOMC's New Economic Projections," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(5), pages 1019-1049, August.
    9. Yingying Xu & Zhixin Liu & Zichao Jia & Chi-Wei Su, 2017. "Is time-variant information stickiness state-dependent?," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(3), pages 169-187, December.
    10. Zidong An & João Tovar Jalles & Prakash Loungani, 2018. "How well do economists forecast recessions?," International Finance, Wiley Blackwell, vol. 21(2), pages 100-121, June.
    11. Jonathan Benchimol & Makram El-Shagi & Yossi Saadon, 2020. "Do Expert Experience and Characteristics Affect Inflation Forecasts?," CFDS Discussion Paper Series 2020/6, Center for Financial Development and Stability at Henan University, Kaifeng, Henan, China.
    12. CHEN Cheng & SENGA Tatsuro & SUN Chang & ZHANG Hongyong, 2018. "Uncertainty, Imperfect Information, and Expectation Formation over the Firm's Life Cycle," Discussion papers 18010, Research Institute of Economy, Trade and Industry (RIETI).
    13. Olivier Coibion & Yuriy Gorodnichenko & Tiziano Ropele, 2020. "Inflation Expectations and Firm Decisions: New Causal Evidence," The Quarterly Journal of Economics, Oxford University Press, vol. 135(1), pages 165-219.
    14. Reslow, André, 2019. "Inefficient Use of Competitors’ Forecasts?," Working Paper Series 2019:9, Uppsala University, Department of Economics.
    15. Martin Geiger & Johann Scharler, 2021. "How Do People Interpret Macroeconomic Shocks? Evidence from U.S. Survey Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(4), pages 813-843, June.
    16. Assenza, T. & Heemeijer, P. & Hommes, C.H. & Massaro, D., 2021. "Managing self-organization of expectations through monetary policy: A macro experiment," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 170-186.
    17. Benchimol, Jonathan & Bounader, Lahcen, 2018. "Optimal monetary policy under bounded rationality," Research Discussion Papers 9/2018, Bank of Finland.
    18. Michael J. Lamla & Lena Draeger, 2013. "Anchoring of Consumers' Inflation Expectations," KOF Working papers 13-339, KOF Swiss Economic Institute, ETH Zurich.
    19. Messina, Jeffrey D. & Sinclair, Tara M. & Stekler, Herman, 2015. "What can we learn from revisions to the Greenbook forecasts?," Journal of Macroeconomics, Elsevier, vol. 45(C), pages 54-62.
    20. Döpke Jörg & Fritsche Ulrich & Waldhof Gabi, 2019. "Theories, Techniques and the Formation of German Business Cycle Forecasts : Evidence from a survey of professional forecasters," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(2), pages 203-241, April.

    More about this item

    Keywords

    Nordhaus test; Expectations updating; Forecast efficiency; Fixed-event forecasts; Inattentive forecasters.;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tow:wpaper:2020-05. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/detowus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Juergen Jung (email available below). General contact details of provider: https://edirc.repec.org/data/detowus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.