IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20120133.html

Transformed Polynomials for Nonlinear Autoregressive Models of the Conditional Mean

Author

Listed:
  • Francisco Blasques

    (VU University Amsterdam)

Abstract

This discussion paper led to a publication in 'Journal of Time Series Analysis' , 2014, 35(3), 218-238. This paper proposes a new set of transformed polynomial functions that provide a flexible setting for nonlinear autoregressive modeling of the conditional mean while at the same time ensuring the strict stationarity, ergodicity, fading memory and existence of moments of the implied stochastic sequence. The great flexibility of the transformed polynomial functions makes them interesting for both parametric and semi-nonparametric autoregressive modeling. This flexibility is established by showing that transformed polynomial sieves are sup-norm-dense on the space of continuous functions and offer appropriate convergence speeds on Holder function spaces.

Suggested Citation

  • Francisco Blasques, 2012. "Transformed Polynomials for Nonlinear Autoregressive Models of the Conditional Mean," Tinbergen Institute Discussion Papers 12-133/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20120133
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/12133.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. K. S. Lim, 1987. "A Comparative Study Of Various Univariate Time Series Models For Canadian Lynx Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(2), pages 161-176, March.
    2. Taylor, John B & Uhlig, Harald, 1990. "Solving Nonlinear Stochastic Growth Models: A Comparison of Alternative Solution Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 1-17, January.
    3. Santos, Manuel S, 1991. "Smoothness of the Policy Function in Discrete Time Economic Models," Econometrica, Econometric Society, vol. 59(5), pages 1365-1382, September.
    4. Christopher A. Sims & Jinill Kim & Sunghyun Kim, 2003. "Calculating and Using Second Order Accurate Solution of Discrete Time Dynamic Equilibrium Models," Computing in Economics and Finance 2003 162, Society for Computational Economics.
    5. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, January.
    6. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    7. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    8. Jesus Fernandez-Villaverde & Pablo Guerron-Quintana & Juan F. Rubio-Ramirez & Martin Uribe, 2011. "Risk Matters: The Real Effects of Volatility Shocks," American Economic Review, American Economic Association, vol. 101(6), pages 2530-2561, October.
    9. Lombardo, Giovanni, 2010. "On approximating DSGE models by series expansions," Working Paper Series 1264, European Central Bank.
    10. Tjøstheim, Dag, 1986. "Estimation in nonlinear time series models," Stochastic Processes and their Applications, Elsevier, vol. 21(2), pages 251-273, February.
    11. Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207.
    12. Karen E. Dynan, 2000. "Habit Formation in Consumer Preferences: Evidence from Panel Data," American Economic Review, American Economic Association, vol. 90(3), pages 391-406, June.
    13. Terasvirta, Timo & Tjostheim, Dag & Granger, Clive W. J., 2010. "Modelling Nonlinear Economic Time Series," OUP Catalogue, Oxford University Press, number 9780199587155.
    14. Manuel S. Santos, 2000. "Accuracy of Numerical Solutions using the Euler Equation Residuals," Econometrica, Econometric Society, vol. 68(6), pages 1377-1402, November.
    15. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
    16. Den Haan, Wouter J. & De Wind, Joris, 2012. "Nonlinear and stable perturbation-based approximations," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1477-1497.
    17. Doukhan, Paul & Louhichi, Sana, 1999. "A new weak dependence condition and applications to moment inequalities," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 313-342, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Francisco (F.) Blasques & Marc Nientker, 2019. "Transformed Perturbation Solutions for Dynamic Stochastic General Equilibrium Models," Tinbergen Institute Discussion Papers 19-012/III, Tinbergen Institute, revised 09 Feb 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    2. Francisco (F.) Blasques & Marc Nientker, 2019. "Transformed Perturbation Solutions for Dynamic Stochastic General Equilibrium Models," Tinbergen Institute Discussion Papers 19-012/III, Tinbergen Institute, revised 09 Feb 2020.
    3. Paul Pichler, 2005. "Evaluating Approximate Equilibria of Dynamic Economic Models," Vienna Economics Papers 0510, University of Vienna, Department of Economics.
    4. Posch, Olaf & Trimborn, Timo, 2013. "Numerical solution of dynamic equilibrium models under Poisson uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2602-2622.
    5. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2014. "Lower Bounds on Approximation Errors: Testing the Hypothesis That a Numerical Solution Is Accurate?," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-06, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
    6. Lan, Hong & Meyer-Gohde, Alexander, 2013. "Solving DSGE models with a nonlinear moving average," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2643-2667.
    7. Francesco Bianchi & Cosmin L. Ilut & Martin Schneider, 2018. "Uncertainty Shocks, Asset Supply and Pricing over the Business Cycle," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(2), pages 810-854.
    8. Ajevskis, Viktors, 2019. "Nonlocal Solutions To Dynamic Equilibrium Models: The Approximate Stable Manifolds Approach," Macroeconomic Dynamics, Cambridge University Press, vol. 23(6), pages 2544-2571, September.
    9. Francisco Blasques, 2013. "Solution-Driven Specification of DSGE Models," Tinbergen Institute Discussion Papers 13-062/III, Tinbergen Institute.
    10. Posch, Olaf & Trimborn, Timo, 2010. "Numerical solution of continuous-time DSGE models under Poisson uncertainty," Hannover Economic Papers (HEP) dp-450, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    11. Lilia Maliar & Serguei Maliar & Sébastien Villemot, 2013. "Taking Perturbation to the Accuracy Frontier: A Hybrid of Local and Global Solutions," Computational Economics, Springer;Society for Computational Economics, vol. 42(3), pages 307-325, October.
    12. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2010. "A Cluster-Grid Projection Method: Solving Problems with High Dimensionality," NBER Working Papers 15965, National Bureau of Economic Research, Inc.
    13. Lilia Maliar & Serguei Maliar & John B. Taylor & Inna Tsener, 2020. "A tractable framework for analyzing a class of nonstationary Markov models," Quantitative Economics, Econometric Society, vol. 11(4), pages 1289-1323, November.
    14. repec:mea:meawpa:13274 is not listed on IDEAS
    15. repec:hum:wpaper:sfb649dp2013-024 is not listed on IDEAS
    16. Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez, 2004. "Estimating nonlinear dynamic equilibrium economies: a likelihood approach," FRB Atlanta Working Paper 2004-1, Federal Reserve Bank of Atlanta.
    17. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    18. Andrew Foerster & Juan F. Rubio-Ramirez & Daniel F. Waggoner & Tao Zha, 2013. "Perturbation methods for Markov-switching DSGE models," FRB Atlanta Working Paper 2013-01, Federal Reserve Bank of Atlanta.
    19. Viktors Ajevskis, 2019. "Generalised Impulse Response Function as a Perturbation of a Global Solution to DSGE Models," Working Papers 2019/04, Latvijas Banka.
    20. Barillas, Francisco & Fernandez-Villaverde, Jesus, 2007. "A generalization of the endogenous grid method," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2698-2712, August.
    21. Serguei Maliar & John Taylor & Lilia Maliar, 2016. "The Impact of Alternative Transitions to Normalized Monetary Policy," 2016 Meeting Papers 794, Society for Economic Dynamics.
    22. José Cao-Alvira, 2010. "Finite Elements in the Presence of Occasionally Binding Constraints," Computational Economics, Springer;Society for Computational Economics, vol. 35(4), pages 355-370, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20120133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.