IDEAS home Printed from https://ideas.repec.org/p/ris/adbiwp/0352.html
   My bibliography  Save this paper

Development Trajectories, Emission Profile, and Policy Actions: Thailand

Author

Listed:
  • Qwanruedee Chotichanathawewong

    (Asian Development Bank Institute)

  • Natapol Thongplew

    (Asian Development Bank Institute)

Abstract

In Thailand climate change has been integrated into the formulation of several national plans and policies. Both the public and private sector have been actively involved in reducing greenhouse gas emissions, with a series of measures and actions implemented in each sector. The development of renewable energy and the promotion of energy conservation and efficiency have been the primary means to mitigate greenhouse gas emissions in Thailand and though it has made significant progresses toward green and low-carbon development, there is a need to further address the issue.

Suggested Citation

  • Qwanruedee Chotichanathawewong & Natapol Thongplew, 2012. "Development Trajectories, Emission Profile, and Policy Actions: Thailand," ADBI Working Papers 352, Asian Development Bank Institute.
  • Handle: RePEc:ris:adbiwp:0352
    as

    Download full text from publisher

    File URL: http://www.adbi.org/files/2012.04.12.wp352.dev.trajectories.emission.thailand.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nakawiro, Thanawat & Bhattacharyya, Subhes C. & Limmeechokchai, Bundit, 2008. "Electricity capacity expansion in Thailand: An analysis of gas dependence and fuel import reliance," Energy, Elsevier, vol. 33(5), pages 712-723.
    2. Pongthanaisawan, Jakapong & Sorapipatana, Chumnong, 2010. "Relationship between level of economic development and motorcycle and car ownerships and their impacts on fuel consumption and greenhouse gas emission in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2966-2975, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raya Muttarak & Thanyaporn Chankrajang, 2015. "Who is concerned about and takes action on climate change? Gender and education divides among Thais," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 13(1), pages 193-220.
    2. Sylvia Gaylord & Kathleen J. Hancock, 2013. "Developing world: national energy strategies," Chapters, in: Hugh Dyer & Maria Julia Trombetta (ed.), International Handbook of Energy Security, chapter 10, pages 206-236, Edward Elgar Publishing.
    3. Jin‐Li Hu & Satoshi Honma & Yu‐Kai Chen, 2021. "Total‐Factor Energy and Emission Efficiencies of ASEAN and Other Asian Economies," Asian Economic Policy Review, Japan Center for Economic Research, vol. 16(1), pages 92-112, January.
    4. Chankrajang, Thanyaporn & Muttarak, Raya, 2017. "Green Returns to Education: Does Schooling Contribute to Pro-Environmental Behaviours? Evidence from Thailand," Ecological Economics, Elsevier, vol. 131(C), pages 434-448.
    5. Venkatachalam ANBUMOZHI, 2015. "Low Carbon Green Growth in Asia: What is the Scope for Regional Cooperation?," Working Papers DP-2015-29, Economic Research Institute for ASEAN and East Asia (ERIA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
    2. Ru-Jen Lin & Rong-Huei Chen & Thao-Minh Ho, 2013. "Market Demand, Green Innovation, and Firm Performance: Evidence from Hybrid Vehicle Industry," Diversity, Technology, and Innovation for Operational Competitiveness: Proceedings of the 2013 International Conference on Technology Innovation and Industrial Management,, ToKnowPress.
    3. Lin, Boqiang & Wu, Wei, 2021. "The impact of electric vehicle penetration: A recursive dynamic CGE analysis of China," Energy Economics, Elsevier, vol. 94(C).
    4. Law, Teik Hua & Hamid, Hussain & Goh, Chia Ning, 2015. "The motorcycle to passenger car ownership ratio and economic growth: A cross-country analysis," Journal of Transport Geography, Elsevier, vol. 46(C), pages 122-128.
    5. Gitizadeh, Mohsen & Kaji, Mahdi & Aghaei, Jamshid, 2013. "Risk based multiobjective generation expansion planning considering renewable energy sources," Energy, Elsevier, vol. 50(C), pages 74-82.
    6. Shahbaz, Muhammad & Khraief, Naceur & Jemaa, Mohamed Mekki Ben, 2015. "On the causal nexus of road transport CO2 emissions and macroeconomic variables in Tunisia: Evidence from combined cointegration tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 89-100.
    7. Chien, Fengsheng & Hsu, Ching-Chi & Ozturk, Ilhan & Sharif, Arshian & Sadiq, Muhammad, 2022. "The role of renewable energy and urbanization towards greenhouse gas emission in top Asian countries: Evidence from advance panel estimations," Renewable Energy, Elsevier, vol. 186(C), pages 207-216.
    8. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    9. Oda, Hiromu & Noguchi, Hiroki & Fuse, Masaaki, 2022. "Review of life cycle assessment for automobiles: A meta-analysis-based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Foley, A.M. & Leahy, P.G. & Li, K. & McKeogh, E.J. & Morrison, A.P., 2015. "A long-term analysis of pumped hydro storage to firm wind power," Applied Energy, Elsevier, vol. 137(C), pages 638-648.
    11. Sławomir Dorocki & Dorota Wantuch-Matla, 2021. "Power Two-Wheelers as an Element of Sustainable Urban Mobility in Europe," Land, MDPI, vol. 10(6), pages 1-25, June.
    12. Pablo-Romero, M.P. & Cruz, L. & Barata, E., 2017. "Testing the transport energy-environmental Kuznets curve hypothesis in the EU27 countries," Energy Economics, Elsevier, vol. 62(C), pages 257-269.
    13. Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H., 2011. "A review on emissions and mitigation strategies for road transport in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3516-3522.
    14. Aryanpur, Vahid & Atabaki, Mohammad Saeid & Marzband, Mousa & Siano, Pierluigi & Ghayoumi, Kiarash, 2019. "An overview of energy planning in Iran and transition pathways towards sustainable electricity supply sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 58-74.
    15. Xu, Jiayi & Tan-Soo, Jie-Sheng & Chu, Yanlai & Zhang, Xiao-Bing, 2023. "Gasoline price and fuel economy of new automobiles: Evidence from Chinese cities," Energy Economics, Elsevier, vol. 126(C).
    16. Koltsaklis, Nikolaos E. & Liu, Pei & Georgiadis, Michael C., 2015. "An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response," Energy, Elsevier, vol. 82(C), pages 865-888.
    17. Nishitateno, Shuhei & Burke, Paul J., 2014. "The motorcycle Kuznets curve," Journal of Transport Geography, Elsevier, vol. 36(C), pages 116-123.
    18. Lin, Boqiang & Raza, Muhammad Yousaf, 2020. "Analysis of energy security indicators and CO2 emissions. A case from a developing economy," Energy, Elsevier, vol. 200(C).
    19. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H., 2011. "Logistics cost analysis of rice straw for biomass power generation in Thailand," Energy, Elsevier, vol. 36(3), pages 1435-1441.
    20. Sadeghi, Hadi & Rashidinejad, Masoud & Abdollahi, Amir, 2017. "A comprehensive sequential review study through the generation expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1369-1394.

    More about this item

    Keywords

    climate change; thailand; greenhouse gas emissions; renewable energy; low-carbon development;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:adbiwp:0352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ADB Institute (email available below). General contact details of provider: https://edirc.repec.org/data/adbinjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.