IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Three-structured smooth transition regression models based on CART algorithm

  • Joel Corrêa da Rosa

    (Department of Statistics, Federal University of Paraná)

  • Álvaro Veiga

    (Department of Electrical Engineering, PUC-Rio)

  • Marcelo C. Medeiros

    ()

    (Department of Economics PUC-Rio)

In the present work, a tree-based model that combines aspects of CART (Classification and Regression Trees) and STR (Smooth Transition Regression) is proposed. The main idea relies on specifying a parametric nonlinear model through a tree-growing procedure. The resulting model can be analysed either as a fuzzy regression or as a smooth transition regression with multiple regimes. Decisions about splits are entirely based on statistical tests of hypotheses and confidence intervals are constructed for the parameters within the terminal nodes as well as the final predictions. A Monte Carlo Experiment shows the estimators’ properties and the ability of the proposed algorithm to identify correctly several tree architectures. An application to the famous Boston Housing dataset shows that the proposed model provides better explanation with the same number of leaves as the one obtained with the CART algorithm.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.econ.puc-rio.br/pdf/td469.pdf
Download Restriction: no

Paper provided by Department of Economics PUC-Rio (Brazil) in its series Textos para discussão with number 469.

as
in new window

Length: 32 pages
Date of creation: Jan 2003
Date of revision:
Handle: RePEc:rio:texdis:469
Contact details of provider: Postal: Rua Marquês de São Vicente, 225, 22453-900 Rio de Janeiro, RJ
Phone: 021 35271078
Fax: 021 35271084
Web page: http://www.econ.puc-rio.br

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Wooldridge, Jeffrey M., 1991. "On the application of robust, regression- based diagnostics to models of conditional means and conditional variances," Journal of Econometrics, Elsevier, vol. 47(1), pages 5-46, January.
  2. White, Halbert & Domowitz, Ian, 1984. "Nonlinear Regression with Dependent Observations," Econometrica, Econometric Society, vol. 52(1), pages 143-61, January.
  3. Medeiros, Marcelo C. & Teräsvirta, Timo & Rech, Gianluigi, 2002. "Building neural network models for time series: A statistical approach," SSE/EFI Working Paper Series in Economics and Finance 508, Stockholm School of Economics.
  4. Ciampi, Antonio, 1991. "Generalized regression trees," Computational Statistics & Data Analysis, Elsevier, vol. 12(1), pages 57-78, August.
  5. Eitrheim, Øyvind & Teräsvirta, Timo, 1995. "Testing the Adequacy of Smooth Transition Autoregressive Models," SSE/EFI Working Paper Series in Economics and Finance 56, Stockholm School of Economics.
  6. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
  7. Potscher, Benedikt M. & Prucha, Ingmar R., 1986. "A class of partially adaptive one-step m-estimators for the non-linear regression model with dependent observations," Journal of Econometrics, Elsevier, vol. 32(2), pages 219-251, July.
  8. Cooper, Suzanne J, 1998. "Multiple Regimes in U.S. Output Fluctuations," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 92-100, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:rio:texdis:469. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.