IDEAS home Printed from
   My bibliography  Save this article

Testing Unit Root Based on Partially Adaptive Estimation


  • Lima Luiz Renato

    (University of Tennessee - Knoxville)

  • Xiao Zhijie

    (Boston College)


This paper proposes unit root tests based on partially adaptive estimation. The proposed tests provide an intermediate class of inference procedures that are more efficient than the traditional OLS-based methods and simpler than unit root tests based on fully adaptive estimation using nonparametric methods. Taking into account the well documented characteristic of heavy-tail behavior in economic and financial data, we consider unit root tests coupled with a class of partially adaptive M-estimators based on the student-t distributions, which includes the normal distribution as a limiting case. Monte Carlo experiments indicate that, in the presence of heavy tail distributions, the proposed test is more powerful than the traditional ADF test. We apply the proposed test to several macroeconomic time series that have heavy-tailed distributions. The unit root hypothesis is rejected in U.S. real GNP, supporting the literature of transitory shocks in output. However, evidence against unit root is not found in real exchange rate and nominal interest rate even when heavy-tail is taken into account.

Suggested Citation

  • Lima Luiz Renato & Xiao Zhijie, 2010. "Testing Unit Root Based on Partially Adaptive Estimation," Journal of Time Series Econometrics, De Gruyter, vol. 2(1), pages 1-34, June.
  • Handle: RePEc:bpj:jtsmet:v:2:y:2010:i:1:n:2

    Download full text from publisher

    File URL:
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Phillips, Peter C B & Xiao, Zhijie, 1998. " A Primer on Unit Root Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 423-469, December.
    2. Robert J. Gordon, 1986. "The American Business Cycle: Continuity and Change," NBER Books, National Bureau of Economic Research, Inc, number gord86-1, January.
    3. John Y. Campbell & N. Gregory Mankiw, 1987. "Are Output Fluctuations Transitory?," The Quarterly Journal of Economics, Oxford University Press, vol. 102(4), pages 857-880.
    4. Cheung, Yin-Wong & Lai, Kon S., 1997. "Bandwidth Selection, Prewhitening, and the Power of the Phillips-Perron Test," Econometric Theory, Cambridge University Press, vol. 13(05), pages 679-691, October.
    5. Xiao, Zhijie, 2001. "Likelihood-Based Inference In Trending Time Series With A Root Near Unity," Econometric Theory, Cambridge University Press, vol. 17(06), pages 1082-1112, December.
    6. Balke, Nathan S & Fomby, Thomas B, 1994. "Large Shocks, Small Shocks, and Economic Fluctuations: Outliers in Macroeconomic Time Series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 9(2), pages 181-200, April-Jun.
    7. Rothenberg, Thomas J. & Stock, James H., 1997. "Inference in a nearly integrated autoregressive model with nonnormal innovations," Journal of Econometrics, Elsevier, vol. 80(2), pages 269-286, October.
    8. Potscher, Benedikt M. & Prucha, Ingmar R., 1986. "A class of partially adaptive one-step m-estimators for the non-linear regression model with dependent observations," Journal of Econometrics, Elsevier, vol. 32(2), pages 219-251, July.
    9. Knight, Keith, 1991. "Limit Theory for M-Estimates in an Integrated Infinite Variance," Econometric Theory, Cambridge University Press, vol. 7(02), pages 200-212, June.
    10. Lucas, André, 1995. "Unit Root Tests Based on M Estimators," Econometric Theory, Cambridge University Press, vol. 11(02), pages 331-346, February.
    11. Gamini Premaratne, 2005. "A Test for Symmetry with Leptokurtic Financial Data," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(2), pages 169-187.
    12. Phillips, Peter C.B., 1995. "Robust Nonstationary Regression," Econometric Theory, Cambridge University Press, vol. 11(05), pages 912-951, October.
    13. Lucas, Andre, 1995. "An outlier robust unit root test with an application to the extended Nelson-Plosser data," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 153-173.
    14. White, Halbert & Domowitz, Ian, 1984. "Nonlinear Regression with Dependent Observations," Econometrica, Econometric Society, vol. 52(1), pages 143-161, January.
    15. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Olivier Darné & Amélie Charles, 2012. "A note on the uncertain trend in US real GNP: Evidence from robust unit root tests," Economics Bulletin, AccessEcon, vol. 32(3), pages 2399-2406.
    2. Charles, Amélie & Darné, Olivier, 2012. "Trends and random walks in macroeconomic time series: A reappraisal," Journal of Macroeconomics, Elsevier, vol. 34(1), pages 167-180.
    3. Flôres Junior, Renato Galvão, 2004. "On the use (fulness) of CGE modelling in trade negotiations and policy," FGV/EPGE Economics Working Papers (Ensaios Economicos da EPGE) 564, FGV/EPGE - Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jtsmet:v:2:y:2010:i:1:n:2. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.