IDEAS home Printed from
   My bibliography  Save this paper

Linearity Testing Against a Fuzzy Rule-based Model


  • José Luis Aznarte

    () (Department of Computer Science and Artificial Intelligence,CITIC-UGR, University of Granada, (Spain))

  • Marcelo Cunha Medeiros

    () (Department of Economics PUC-Rio)

  • José Manuel Benítez Sánchez

    (Department of Computer Science and Artificial Intelligence,CITIC-UGR, University of Granada, (Spain))


In this paper, we introduce a linearity test for fuzzy rule-based models in the framework of time series modeling. To do so, we explore a family of statistical models, the regime switching autoregressive models, and the relations that link them to the fuzzy rule-based models. From these relations, we derive a Lagrange Multiplier linearity test and some properties of the maximum likelihood estimator needed for it. Finally, an empirical study of the goodness of the test is presented.

Suggested Citation

  • José Luis Aznarte & Marcelo Cunha Medeiros & José Manuel Benítez Sánchez, 2010. "Linearity Testing Against a Fuzzy Rule-based Model," Textos para discussão 566, Department of Economics PUC-Rio (Brazil).
  • Handle: RePEc:rio:texdis:566

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Potscher, Benedikt M. & Prucha, Ingmar R., 1986. "A class of partially adaptive one-step m-estimators for the non-linear regression model with dependent observations," Journal of Econometrics, Elsevier, vol. 32(2), pages 219-251, July.
    2. Shane M. Greenstein (ed.), 2006. "Computing," Books, Edward Elgar Publishing, number 3171.
    3. Timo Teräsvirta & Marcelo C. Medeiros & Gianluigi Rech, 2006. "Building neural network models for time series: a statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 49-75.
    4. Mayte Suarez -Farinas & Carlos E. Pedreira & Marcelo C. Medeiros, 2004. "Local Global Neural Networks: A New Approach for Nonlinear Time Series Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1092-1107, December.
    5. Medeiros, Marcelo & Veiga, Alvaro, 2000. "A Flexible Coefficient Smooth Transition Time Series Model," SSE/EFI Working Paper Series in Economics and Finance 360, Stockholm School of Economics, revised 29 Apr 2004.
    6. White, Halbert & Domowitz, Ian, 1984. "Nonlinear Regression with Dependent Observations," Econometrica, Econometric Society, vol. 52(1), pages 143-161, January.
    Full references (including those not matched with items on IDEAS)

    More about this item


    fuzzy rule-based models; time series; linearity test; statistical inference;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rio:texdis:566. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.