IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Estimation And Asymptotic Theory For A New Class Of Mixture Models

  • Eduardo Mendes

    (Department of Electrical Engineering, PUC-Rio)

  • Alvaro Veiga

    (Department of Electrical Engineering, PUC-Rio)

  • MArcelo Cunha Medeiros


    (Department of Economics, PUC-Rio)

In this paper a new model of mixture of distributions is proposed, where the mixing structure is determined by a smooth transition tree architecture. Models based on mixture of distributions are useful in order to approximate unknown conditional distributions of multivariate data. The tree structure yields a model that is simpler, and in some cases more interpretable, than previous proposals in the literature. Based on the Expectation-Maximization (EM) algorithm a quasi-maximum likelihood estimator is derived and its asymptotic properties are derived under mild regularity conditions. In addition, a specific-to-general model building strategy is proposed in order to avoid possible identification problems. Both the estimation procedure and the model building strategy are evaluated in a Monte Carlo experiment, which give strong support for the theory developed in small samples. The approximation capabilities of the model is also analyzed in a simulation experiment. Finally, two applications with real datasets are considered. KEYWORDS: Mixture models, smooth transition, EM algorithm, asymptotic properties, time series, conditional distribution.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Department of Economics PUC-Rio (Brazil) in its series Textos para discussão with number 538.

in new window

Length: 33p
Date of creation: Jan 2007
Date of revision:
Handle: RePEc:rio:texdis:538
Contact details of provider: Postal: Rua Marquês de São Vicente, 225, 22453-900 Rio de Janeiro, RJ
Phone: 021 35271078
Fax: 021 35271084
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Wolfgang HÄRDLE & H. LÜTKEPOHL & R. CHEN, 1996. "A Review of Nonparametric Time Series Analysis," SFB 373 Discussion Papers 1996,48, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  2. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
  3. Xiaohong Chen & Xiaotong Shen, 1998. "Sieve Extremum Estimates for Weakly Dependent Data," Econometrica, Econometric Society, vol. 66(2), pages 289-314, March.
  4. Medeiros, Marcelo & Veiga, Alvaro, 2000. "A Flexible Coefficient Smooth Transition Time Series Model," SSE/EFI Working Paper Series in Economics and Finance 360, Stockholm School of Economics, revised 10 Feb 2000.
  5. Marcelo C. Medeiros & Timo Terasvirta & Gianluigi Rech, 2002. "Building Neural Network Models for Time Series: A Statistical Approach," Textos para discussão 461, Department of Economics PUC-Rio (Brazil).
  6. da Rosa, Joel Correa & Veiga, Alvaro & Medeiros, Marcelo C., 2008. "Tree-structured smooth transition regression models," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2469-2488, January.
  7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  8. Rech, Gianluigi & Teräsvirta, Timo & Tschernig, Rolf, 1999. "A simple variable selection technique for nonlinear models," SFB 373 Discussion Papers 1999,26, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  9. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
  10. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(01), pages 232-261, February.
  11. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:rio:texdis:538. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.