IDEAS home Printed from https://ideas.repec.org/p/rco/dpaper/558.html

Delegating in the Age of AI: Preferences for Decision Autonomy

Author

Listed:
  • Radosveta Ivanova-Stenzel

    (TU Berlin)

  • Michel Tolksdorf

    (TU Berlin)

Abstract

Despite the documented benefits of algorithmic decision-making, individuals often prefer to retain control rather than delegate decisions to AI agents. To what extent are the aversion to and distrust of algorithms rooted in a fundamental discomfort with giving up decision authority? Using two incentivized laboratory experiments across distinct decision domains, hiring (social decision-making) and forecasting (analytical decision-making), and decision architecture (nature and number of decisions), we elicit participants’ willingness to delegate decisions separately to an AI agent and a human agent. This within-subject design enables a direct comparison of delegation preferences across different agent types. We find that participants consistently underutilize both agents, even when informed of the agents’ superior performance. However, participants are more willing to delegate to the AI agent than to the human agent. Our results suggest that algorithm aversion may be driven less by distrust in AI and more by a general preference for decision autonomy. This implies that efforts to increase algorithm adoption should address broader concerns about control, rather than focusing solely on trust-building interventions.

Suggested Citation

  • Radosveta Ivanova-Stenzel & Michel Tolksdorf, 2025. "Delegating in the Age of AI: Preferences for Decision Autonomy," Rationality and Competition Discussion Paper Series 558, CRC TRR 190 Rationality and Competition.
  • Handle: RePEc:rco:dpaper:558
    as

    Download full text from publisher

    File URL: https://rationality-and-competition.de/wp-content/uploads/discussion_paper/558.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior
    • D44 - Microeconomics - - Market Structure, Pricing, and Design - - - Auctions
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rco:dpaper:558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Viviana Lalli (email available below). General contact details of provider: https://rationality-and-competition.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.