IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/59046.html
   My bibliography  Save this paper

A Measure of Early Warning of Exchange-Rate Crises Based on the Hurst Coefficient and the Αlpha-Stable Parameter

Author

Listed:
  • Rodríguez-Aguilar, Román
  • Cruz-Aké, Salvador
  • Venegas-Martínez, Francisco

Abstract

The Hurst coefficient and the alpha-stable parameter are useful indicators in the analysis of time series to detect normality and absence of self-similarity. In particular, when these two features met simultaneously, it is said that the series is driven by white noise. This paper is aimed at developing an index to measure the degree to which a time series departs from white noise. The proposed index is built by using the principal component analysis of the Mahalanobis distances between the Hurst coefficient and the alpha-stable parameter from theoretical values of normality and absence of self-similarity. A zero value of the index corresponds to a pure white noise process, while a 100 value correspond to the maximum distance between the actual series and the theoretical white noise. The proposed index is applied to examine the exchange rate of the Mexican peso against the USA dollar. When examining the exchange rate, one distinctive finding of the Index is that it can be used as an early warning indicator of crises, as it is shown for the Mexican case.

Suggested Citation

  • Rodríguez-Aguilar, Román & Cruz-Aké, Salvador & Venegas-Martínez, Francisco, 2014. "A Measure of Early Warning of Exchange-Rate Crises Based on the Hurst Coefficient and the Αlpha-Stable Parameter," MPRA Paper 59046, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:59046
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/59046/1/MPRA_paper_59046.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christopher J. Neely, 2001. "The practice of central bank intervention: looking under the hood," Review, Federal Reserve Bank of St. Louis, vol. 83(May), pages 1-10.
    2. repec:crs:wpaper:9607 is not listed on IDEAS
    3. Stefan Thurner & J. Doyne Farmer & John Geanakoplos, 2012. "Leverage causes fat tails and clustered volatility," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 695-707, February.
    4. Mensi, Walid & Hammoudeh, Shawkat & Yoon, Seong-Min, 2014. "Structural breaks and long memory in modeling and forecasting volatility of foreign exchange markets of oil exporters: The importance of scheduled and unscheduled news announcements," International Review of Economics & Finance, Elsevier, vol. 30(C), pages 101-119.
    5. Refet S. Gürkaynak, 2008. "Econometric Tests Of Asset Price Bubbles: Taking Stock," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 166-186, February.
    6. Kirchler, Michael & Huber, Jurgen, 2007. "Fat tails and volatility clustering in experimental asset markets," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1844-1874, June.
    7. Ansgar Belke & Gunther Schnabl, 2013. "Four Generations of Global Imbalances," Review of International Economics, Wiley Blackwell, vol. 21(1), pages 1-5, February.
    8. Jack Meaning & Feng Zhu, 2011. "The impact of recent central bank asset purchase programmes," BIS Quarterly Review, Bank for International Settlements, December.
    9. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    10. Kulik, Rafal & Soulier, Philippe, 2011. "The tail empirical process for long memory stochastic volatility sequences," Stochastic Processes and their Applications, Elsevier, vol. 121(1), pages 109-134, January.
    11. E. Barany & M. P. Beccar Varela & I. Florescu & I. Sengupta, 2012. "Detecting market crashes by analysing long-memory effects using high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 623-634, April.
    12. Mistrulli, Paolo Emilio, 2011. "Assessing financial contagion in the interbank market: Maximum entropy versus observed interbank lending patterns," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1114-1127, May.
    13. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    14. Cajueiro, Daniel O & Tabak, Benjamin M, 2004. "The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 521-537.
    15. repec:cuf:journl:y:2013:v:14:i:3:kaminsky is not listed on IDEAS
    16. Al-Anaswah, Nael & Wilfling, Bernd, 2011. "Identification of speculative bubbles using state-space models with Markov-switching," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1073-1086, May.
    17. Sánchez Granero, M.A. & Trinidad Segovia, J.E. & García Pérez, J., 2008. "Some comments on Hurst exponent and the long memory processes on capital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5543-5551.
    18. Cheung, Yin-Wong & Lai, Kon S., 1995. "A search for long memory in international stock market returns," Journal of International Money and Finance, Elsevier, vol. 14(4), pages 597-615, August.
    19. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    20. Benoit Mandelbrot, 1965. "Forecasts of Future Prices, Unbiased Markets, and "Martingale" Models," The Journal of Business, University of Chicago Press, vol. 39, pages 242-242.
    21. Fatum, Rasmus & Pedersen, Jesper & Sørensen, Peter Norman, 2013. "The intraday effects of central bank intervention on exchange rate spreads," Journal of International Money and Finance, Elsevier, vol. 33(C), pages 103-117.
    22. Jia, Zhanliang & Cui, Meilan & Li, Handong, 2012. "Research on the relationship between the multifractality and long memory of realized volatility in the SSECI," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 740-749.
    23. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    24. Cajueiro, Daniel O. & Tabak, Benjamin M., 2005. "The rescaled variance statistic and the determination of the Hurst exponent," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 70(3), pages 172-179.
    25. Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
    26. Rostek, S. & Schöbel, R., 2013. "A note on the use of fractional Brownian motion for financial modeling," Economic Modelling, Elsevier, vol. 30(C), pages 30-35.
    27. Lim, Kian-Ping & Brooks, Robert D. & Kim, Jae H., 2008. "Financial crisis and stock market efficiency: Empirical evidence from Asian countries," International Review of Financial Analysis, Elsevier, vol. 17(3), pages 571-591, June.
    28. Cannon, Michael J. & Percival, Donald B. & Caccia, David C. & Raymond, Gary M. & Bassingthwaighte, James B., 1997. "Evaluating scaled windowed variance methods for estimating the Hurst coefficient of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 241(3), pages 606-626.
    29. Mandelbrot, Benoit B, 1971. "When Can Price Be Arbitraged Efficiently? A Limit to the Validity of the Random Walk and Martingale Models," The Review of Economics and Statistics, MIT Press, vol. 53(3), pages 225-236, August.
    30. Andersen, J.V. & Sornette, D., 2004. "Fearless versus fearful speculative financial bubbles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(3), pages 565-585.
    31. Mielniczuk, J. & Wojdyllo, P., 2007. "Estimation of Hurst exponent revisited," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4510-4525, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    2. Tzouras, Spilios & Anagnostopoulos, Christoforos & McCoy, Emma, 2015. "Financial time series modeling using the Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 50-68.
    3. Tan, Pei P. & Galagedera, Don U.A. & Maharaj, Elizabeth A., 2012. "A wavelet based investigation of long memory in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2330-2341.
    4. Anagnostidis, P. & Varsakelis, C. & Emmanouilides, C.J., 2016. "Has the 2008 financial crisis affected stock market efficiency? The case of Eurozone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 116-128.
    5. Auer, Benjamin R., 2016. "On the performance of simple trading rules derived from the fractal dynamics of gold and silver price fluctuations," Finance Research Letters, Elsevier, vol. 16(C), pages 255-267.
    6. Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Auer, Benjamin R., 2016. "On time-varying predictability of emerging stock market returns," Emerging Markets Review, Elsevier, vol. 27(C), pages 1-13.
    8. Benjamin R Auer, 2016. "Pure return persistence, Hurst exponents and hedge fund selection – A practical note," Journal of Asset Management, Palgrave Macmillan, vol. 17(5), pages 319-330, September.
    9. Turvey, Calum G., 2007. "A note on scaled variance ratio estimation of the Hurst exponent with application to agricultural commodity prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 155-165.
    10. Scheffknecht, Lukas & Geiger, Felix, 2011. "A behavioral macroeconomic model with endogenous boom-bust cycles and leverage dynamcis," FZID Discussion Papers 37-2011, University of Hohenheim, Center for Research on Innovation and Services (FZID).
    11. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Papers 2105.09140, arXiv.org, revised Sep 2021.
    12. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    13. Staccioli, Jacopo & Napoletano, Mauro, 2021. "An agent-based model of intra-day financial markets dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 331-348.
    14. Onali, Enrico & Goddard, John, 2011. "Are European equity markets efficient? New evidence from fractal analysis," International Review of Financial Analysis, Elsevier, vol. 20(2), pages 59-67, April.
    15. Anju Bala & Kapil Gupta, 2020. "Examining The Long Memory In Stock Returns And Liquidity In India," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 9(3), pages 25-43.
    16. Goddard, John & Onali, Enrico, 2012. "Self-affinity in financial asset returns," International Review of Financial Analysis, Elsevier, vol. 24(C), pages 1-11.
    17. Oluwasegun B. Adekoya, 2021. "Persistence and efficiency of OECD stock markets: linear and nonlinear fractional integration approaches," Empirical Economics, Springer, vol. 61(3), pages 1415-1433, September.
    18. Ritesh Kumar Mishra & Sanjay Sehgal & N.R. Bhanumurthy, 2011. "A search for long‐range dependence and chaotic structure in Indian stock market," Review of Financial Economics, John Wiley & Sons, vol. 20(2), pages 96-104, May.
    19. Po-Keng Cheng & Young Shin Kim, 2017. "Speculative bubbles and crashes: Fundamentalists and positive‐feedback trading," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1381370-138, January.
    20. Erhard Reschenhofer & Manveer K. Mangat, 2020. "Reducing the Bias of the Smoothed Log Periodogram Regression for Financial High-Frequency Data," Econometrics, MDPI, vol. 8(4), pages 1-15, October.

    More about this item

    Keywords

    Fractional Brownian motion; Hurst coefficient; self-similarity; alpha-stable distributions; heavy tails; early warning indicator.;
    All these keywords.

    JEL classification:

    • G0 - Financial Economics - - General
    • G01 - Financial Economics - - General - - - Financial Crises
    • G1 - Financial Economics - - General Financial Markets
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:59046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.