IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0703834.html
   My bibliography  Save this paper

Estimating the Fractal Dimension of the S&P 500 Index using Wavelet Analysis

Author

Listed:
  • Erhan Bayraktar
  • H. Vincent Poor
  • Ronnie Sircar

Abstract

S&P 500 index data sampled at one-minute intervals over the course of 11.5 years (January 1989- May 2000) is analyzed, and in particular the Hurst parameter over segments of stationarity (the time period over which the Hurst parameter is almost constant) is estimated. An asymptotically unbiased and efficient estimator using the log-scale spectrum is employed. The estimator is asymptotically Gaussian and the variance of the estimate that is obtained from a data segment of $N$ points is of order $\frac{1}{N}$. Wavelet analysis is tailor made for the high frequency data set, since it has low computational complexity due to the pyramidal algorithm for computing the detail coefficients. This estimator is robust to additive non-stationarities, and here it is shown to exhibit some degree of robustness to multiplicative non-stationarities, such as seasonalities and volatility persistence, as well. This analysis shows that the market became more efficient in the period 1997-2000.

Suggested Citation

  • Erhan Bayraktar & H. Vincent Poor & Ronnie Sircar, 2007. "Estimating the Fractal Dimension of the S&P 500 Index using Wavelet Analysis," Papers math/0703834, arXiv.org.
  • Handle: RePEc:arx:papers:math/0703834
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0703834
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sottinen Tommi & Valkeila Esko, 2003. "On arbitrage and replication in the fractional Black–Scholes pricing model," Statistics & Risk Modeling, De Gruyter, vol. 21(2/2003), pages 93-108, February.
    2. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    3. Peter Hall & Wolfgang Härdle & Torsten Kleinow & Peter Schmidt, 2000. "Semiparametric Bootstrap Approach to Hypothesis Tests and Confidence Intervals for the Hurst Coefficient," Statistical Inference for Stochastic Processes, Springer, vol. 3(3), pages 263-276, October.
    4. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters,in: THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78 World Scientific Publishing Co. Pte. Ltd..
    5. Mandelbrot, Benoit B, 1971. "When Can Price Be Arbitraged Efficiently? A Limit to the Validity of the Random Walk and Martingale Models," The Review of Economics and Statistics, MIT Press, vol. 53(3), pages 225-236, August.
    6. Greene, Myron T. & Fielitz, Bruce D., 1977. "Long-term dependence in common stock returns," Journal of Financial Economics, Elsevier, vol. 4(3), pages 339-349, May.
    7. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    8. Erhan Bayraktar & Ulrich Horst & Ronnie Sircar, 2006. "A Limit Theorem for Financial Markets with Inert Investors," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 789-810, November.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alper Ozun & Atilla Cifter, 2008. "Modeling long-term memory effect in stock prices: A comparative analysis with GPH test and Daubechies wavelets," Studies in Economics and Finance, Emerald Group Publishing, vol. 25(1), pages 38-48, March.
    2. Erhan Bayraktar & Ulrich Horst & Ronnie Sircar, 2006. "A Limit Theorem for Financial Markets with Inert Investors," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 789-810, November.
    3. Stephanie Rendón de la Torre, 2012. "Estimación del coeficiente de Hurst con wavelets de índices accionarios de Turquía, Indonesia, México y Corea del Sur," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 6(2), pages 27-50.
    4. Erhan Bayraktar & Ulrich Horst & Ronnie Sircar, 2007. "Queueing Theoretic Approaches to Financial Price Fluctuations," Papers math/0703832, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0703834. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.