IDEAS home Printed from https://ideas.repec.org/p/ags/uguewp/34151.html
   My bibliography  Save this paper

Random Walks And Fractal Structures In Agricultural Commodity Futures Prices

Author

Listed:
  • Turvey, Calum G.

Abstract

This paper investigates whether the assumption of Brownian motion often used to describe commodity price movements is satisfied. Using historical data from 17 commodity futures contracts specific tests of fractional and ordinary Brownian motion are conducted. The analyses are conducted under the null hypothesis of ordinary Brownian motion against the alternative of persistent or ergodic fractional Brownian motion. Tests for fractional Brownian motion are based on a variance ratio test and compared with conventional R-S analyses. However, standard errors based on Monte Carlo simulations are quite high, meaning that the acceptance region for the null hypothesis is large. The results indicate that for the most part, the null hypothesis of ordinary Brownian motion cannot be rejected for 14 of 17 series. The three series that did not satisfy the tests were rejected because they violated the stationarity property of the random walk hypothesis.

Suggested Citation

  • Turvey, Calum G., 2001. "Random Walks And Fractal Structures In Agricultural Commodity Futures Prices," Working Papers 34151, University of Guelph, Department of Food, Agricultural and Resource Economics.
  • Handle: RePEc:ags:uguewp:34151
    as

    Download full text from publisher

    File URL: http://purl.umn.edu/34151
    Download Restriction: no

    References listed on IDEAS

    as
    1. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    2. Billy P. Helms & Fred R. Kaen & Robert E. Rosenman, 1984. "Memory in commodity futures contracts," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 4(4), pages 559-567, December.
    3. Booth, G. Geoffrey & Kaen, Fred R. & Koveos, Peter E., 1982. "R/S analysis of foreign exchange rates under two international monetary regimes," Journal of Monetary Economics, Elsevier, vol. 10(3), pages 407-415.
    4. C. H. Hommes, 2001. "Financial markets as nonlinear adaptive evolutionary systems," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 149-167.
    5. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters,in: THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78 World Scientific Publishing Co. Pte. Ltd..
    6. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    7. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    8. B. Mandelbrot, 1972. "Statistical Methodology for Nonperiodic Cycles: From the Covariance To R/S Analysis," NBER Chapters,in: Annals of Economic and Social Measurement, Volume 1, number 3, pages 259-290 National Bureau of Economic Research, Inc.
    9. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-273, April.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-384, March.
    12. Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
    13. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Demand and Price Analysis; Marketing;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:uguewp:34151. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: http://edirc.repec.org/data/dagueca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.