IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/56805.html
   My bibliography  Save this paper

Dynamic modeling of commodity futures prices

Author

Listed:
  • Karapanagiotidis, Paul

Abstract

Theory suggests that physical commodity prices may exhibit nonlinear features such as bubbles and various types of asymmetries. This paper investigates these claims empirically by introducing a new time series model apt to capture such features. The data set is composed of 25 individual, continuous contract, commodity futures price series, representative of a number of industry sectors including softs, precious metals, energy, and livestock. It is shown that the linear causal ARMA model with Gaussian innovations is unable to adequately account for the features of the data. In the purely descriptive time series literature, often a threshold autoregression (TAR) is employed to model cycles or asymmetries. Rather than take this approach, we suggest a novel process which is able to accommodate both bubbles and asymmetries in a flexible way. This process is composed of both causal and noncausal components and is formalized as the mixed causal/noncausal autoregressive model of order (r, s). Estimating the mixed causal/noncausal model with leptokurtic errors, by an approximated maximum likelihood method, results in dramatically improved model fit according to the Akaike information criterion. Comparisons of the estimated unconditional distributions of both the purely causal and mixed models also suggest that the mixed causal/noncausal model is more representative of the data according to the Kullback-Leibler measure. Moreover, these estimation results demonstrate that allowing for such leptokurtic errors permits identification of various types of asymmetries. Finally, a strategy for computing the multiple steps ahead forecast of the conditional distribution is discussed.

Suggested Citation

  • Karapanagiotidis, Paul, 2014. "Dynamic modeling of commodity futures prices," MPRA Paper 56805, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:56805
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/56805/1/MPRA_paper_56805.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Ramirez, Octavio A., 2009. "The Asymmetric Cycling of U.S. Soybeans and Brazilian Coffee Prices: An Opportunity for Improved Forecasting and Understanding of Price Behavior," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 0(Number 1), pages 1-14, April.
    2. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    3. Ross, Stephen A., 1976. "The arbitrage theory of capital asset pricing," Journal of Economic Theory, Elsevier, vol. 13(3), pages 341-360, December.
    4. Steven C. Blank, 1991. "“Chaos” in futures markets? A nonlinear dynamical analysis," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 11(6), pages 711-728, December.
    5. Working, Holbrook, 1933. "Price Relations Between July And September Wheat Futures At Chicago Since 1885," Wheat Studies, Stanford University, Food Research Institute, vol. 0(Number 06), March.
    6. Blanchard, Olivier Jean, 1979. "Speculative bubbles, crashes and rational expectations," Economics Letters, Elsevier, vol. 3(4), pages 387-389.
    7. Seung‐Ryong Yang & B. Wade Brorsen, 1993. "Nonlinear dynamics of daily futures prices: Conditional heteroskedasticity or chaos?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(2), pages 175-191, April.
    8. Gibson, Rajna & Schwartz, Eduardo S, 1990. " Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    9. Marc Hallin & Claude Lefèvre & Madan Lal Puri, 1988. "On time-reversibility and the uniqueness of moving average representations for non-Gaussian stationary time series," ULB Institutional Repository 2013/2017, ULB -- Universite Libre de Bruxelles.
    10. Evans, George W, 1991. "Pitfalls in Testing for Explosive Bubbles in Asset Prices," American Economic Review, American Economic Association, vol. 81(4), pages 922-930, September.
    11. Lof Matthijs, 2013. "Noncausality and asset pricing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(2), pages 211-220, April.
    12. Lanne, Markku & Luoto, Jani & Saikkonen, Pentti, 2012. "Optimal forecasting of noncausal autoregressive time series," International Journal of Forecasting, Elsevier, vol. 28(3), pages 623-631.
    13. Barry K. Goodwin & Nicholas E. Piggott, 2001. "Spatial Market Integration in the Presence of Threshold Effects," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(2), pages 302-317.
    14. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew "t"-distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389.
    15. Symeonidis, Lazaros & Prokopczuk, Marcel & Brooks, Chris & Lazar, Emese, 2012. "Futures basis, inventory and commodity price volatility: An empirical analysis," Economic Modelling, Elsevier, vol. 29(6), pages 2651-2663.
    16. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    17. Breeden, Douglas T., 1979. "An intertemporal asset pricing model with stochastic consumption and investment opportunities," Journal of Financial Economics, Elsevier, vol. 7(3), pages 265-296, September.
    18. Andrews, Beth & Davis, Richard A. & Jay Breidt, F., 2006. "Maximum likelihood estimation for all-pass time series models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1638-1659, August.
    19. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    20. Deaton, Angus & Laroque, Guy, 1996. "Competitive Storage and Commodity Price Dynamics," Journal of Political Economy, University of Chicago Press, vol. 104(5), pages 896-923, October.
    21. Sigl-Grüb, C. & Schiereck, D., 2010. "Speculation and Nonlinear Price Dynamics in Commodity Futures Markets," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 56603, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    22. Ramsey, James B & Rothman, Philip, 1996. "Time Irreversibility and Business Cycle Asymmetry," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 28(1), pages 1-21, February.
    23. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    24. repec:adr:anecst:y:2005:i:78:p:01 is not listed on IDEAS
    25. Neftci, Salih N, 1984. "Are Economic Time Series Asymmetric over the Business Cycle?," Journal of Political Economy, University of Chicago Press, vol. 92(2), pages 307-328, April.
    26. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    27. Gourieroux, C & Laffont, J J & Monfort, Alain, 1982. "Rational Expectations in Dynamic Linear Models: Analysis of the Solutions," Econometrica, Econometric Society, vol. 50(2), pages 409-425, March.
    28. Fama, Eugene F & French, Kenneth R, 1987. "Commodity Futures Prices: Some Evidence on Forecast Power, Premiums,and the Theory of Storage," The Journal of Business, University of Chicago Press, vol. 60(1), pages 55-73, January.
    29. Breid, F. Jay & Davis, Richard A. & Lh, Keh-Shin & Rosenblatt, Murray, 1991. "Maximum likelihood estimation for noncausal autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 175-198, February.
    30. Dusak, Katherine, 1973. "Futures Trading and Investor Returns: An Investigation of Commodity Market Risk Premiums," Journal of Political Economy, University of Chicago Press, vol. 81(6), pages 1387-1406, Nov.-Dec..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markku Lanne & Henri Nyberg, 2015. "Nonlinear dynamic interrelationships between real activity and stock returns," CREATES Research Papers 2015-36, Department of Economics and Business Economics, Aarhus University.
    2. repec:eee:eneeco:v:65:y:2017:i:c:p:424-433 is not listed on IDEAS

    More about this item

    Keywords

    commodity futures; mixed causal/noncausal model; nonlinear dynamic models; commodity futures; speculative bubble.;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:56805. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.