IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/125453.html
   My bibliography  Save this paper

Nonlinear Macroeconomic Granger Causality: An ANN Input Occlusion Approach on MSSA-Denoised Data

Author

Listed:
  • Bahaa Aly, Tarek

Abstract

This paper introduced a novel methodology for measuring nonlinear Granger causality in macroeconomic time series by combining Multivariate Singular Spectrum Analysis (MSSA) for data denoising with Artificial Neural Network (ANN) input occlusion for causal inference. We applied this framework to five countries, analyzing key macro-financial variables, including yield curve latent factors, equity indices, exchange rates, inflation, GDP, and policy rates. MSSA enhanced data quality by maximizing signal-to-noise ratios while preserving structural patterns, resulting in more stable ΔMSE values and reduced error variability. ANNs were trained on MSSA-denoised data to predict each target variable using lagged inputs, with input occlusion evaluating the marginal predictive contribution of each input to derive causality p-values. This approach outperformed traditional VAR-based Granger causality tests, identifying 38 significant causal relationships compared to 24 for VAR. Cross-country analysis of variables revealed differences in transmission mechanisms, monetary policy effectiveness, and growth-inflation dynamics. Notably, feature importance rankings showed that policy rates and stock market indices predominantly drove macroeconomic outcomes across countries, underscoring their critical role in economic dynamics. These findings demonstrated that combining MSSA and ANN input occlusion offered a robust framework for analyzing nonlinear causality in complex macroeconomic systems.

Suggested Citation

  • Bahaa Aly, Tarek, 2025. "Nonlinear Macroeconomic Granger Causality: An ANN Input Occlusion Approach on MSSA-Denoised Data," MPRA Paper 125453, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:125453
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/125453/1/MPRA_paper_125453.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:125453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.